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1 Introduction

Heterotic compactifications on Calabi-Yau manifolds necessarily have gauge field expec-

tation values (vevs) in the internal dimensions. This feature, which is a consequence of

demanding that the total charge for the Neveu-Schwarz form should vanish on the internal

compact space, gives rise to much of the complexity and structure of these theories [1, 2].

One of the interesting properties of these gauge field vevs concerns their supersymmetry

preserving properties. The internal field strength, F , is usually chosen so as to preserve

N = 1 supersymmetry in the four-dimensional effective theory. This can be imposed by

demanding that the ten-dimensional gaugino supersymmetry variations vanish. This leads

to the conditions

gabFba = 0 , Fab = Fab = 0 (1.1)
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which are known as the Hermitian Yang-Mills equations (here, a and b̄ are holomorphic and

anti-holomorphic indices on the Calabi-Yau, respectively). However, if one chooses gauge

fields satisfying the Hermitian Yang-Mills equations and, hence, preserving supersymmetry

at one point in moduli space, and then changes the values of the moduli, one can find

that eqs. (1.1) fail to have a solution and supersymmetry becomes broken [3, 4]. More

specifically, it is possible to demarcate regions in Kähler moduli space where the gauge

field vevs can preserve supersymmetry and regions where they necessarily break it [5, 6].

Given the explicit dependence of the eqs. (1.1) on the metric, and hence the Kähler moduli,

such a behaviour is perhaps not surprising.

What happens in the effective field theory when the moduli evolve such that the gauge

fields break supersymmetry? One can see from the dimensional reduction of the ten-

dimensional effective action of the E8 × E8 heterotic theory that there will be a positive

definite potential in the non-supersymmetric region of Kähler moduli space. The argument

goes as follows. Consider the following three terms in the ten-dimensional effective action.

Spartial = − 1

2κ2
10

α′

4

∫

M10

√−g

{

tr
(

F (1)
)2

+ tr
(

F (2)
)2

− trR2

}

. (1.2)

The notation here is standard [2] with the field strengths F (1) and F (2) being associ-

ated to the two E8 factors in the gauge group. One consequence of the ten-dimensional

Bianchi Identity,

dH = −3α′

√
2

(

trF (1) ∧ F (1) + trF (2) ∧ F (2) − trR ∧ R
)

, (1.3)

is its integrability condition,

∫

M6

J ∧
(

tr F (1) ∧ F (1) + tr F (2) ∧ F (2) − tr R ∧ R
)

= 0 , (1.4)

where J is the Kähler form. Now, suppose that we begin with a supersymmetric field

configuration, and then vary the Kähler moduli while keeping the other moduli fixed. The

background gauge field strengths are then (1, 1) forms to lowest order (as is the curvature

two-form). Using this observation, and the fact that we are working, again to lowest order,

with a Ricci flat metric on a manifold of SU(3) holonomy, equation (1.4) can be rewritten

as follows:
∫

M10

√−g

(

tr
(

F (1)
)2

+ tr
(

F (2)
)2

− trR2 − tr
(

F
(1)

ab̄
gab̄
)2

− tr
(

F
(2)

ab̄
gab̄
)2
)

= 0 . (1.5)

Using this relation in (1.2), we arrive at the following result

Spartial = − 1

2κ2
10

α′

4

∫

M10

√−g

{

tr
(

F
(1)

ab̄
gab̄
)2

+ tr
(

F
(2)

ab̄
gab̄
)2
}

. (1.6)

The terms in eq. (1.6) form a part of the ten-dimensional theory which does not contain any

four-dimensional derivatives. It therefore contributes, upon dimensional reduction, to the

potential of the four dimensional theory. In the case of a supersymmetric field configuration,
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the terms in the integrand of (1.6) vanish, these being precisely the squares of the first

equation in (1.1). Thus, in this case, no potential is generated. However, if the Kähler

moduli are varied such that the gauge field vevs are no longer supersymmetric, (1.6) no

longer vanishes and we obtain a positive definite contribution to the potential energy seen

in four dimensions. Thus, we are led to a picture of a perturbative potential which, while

positive definite in the non-supersymmetric regions of moduli space, vanishes precisely

where the gauge field vevs preserve supersymmetry.

Beyond what is described above, it might seem difficult to write down the exact ex-

pression for this potential in terms of the moduli fields. Naively it seems like we need to

know the metric and gauge connection on the Calabi-Yau 3-fold. These quantities are of

course unknown, except possibly numerically [7–10]. In fact, however, one can analytically

derive the exact form of this potential as an explicit function of the moduli fields. This

will be the main focus of the present paper.

Before we can discuss the explicit form of this potential, it is useful to briefly review

the mathematical language normally used to describe supersymmetry within a heterotic

compactification. The question of whether a supersymmetric vacuum exists can be an-

swered by a mathematical analysis of the associated holomorphic vector bundle, V , based

on the Donaldson-Uhlenbeck-Yau theorem [3, 4] and the notion of slope-stability. We will

explicitly carry this out later in the paper. For the purpose of the present general discussion

it suffices to know that the supersymmetry properties of V are governed by a (maximally)

destabilizing sub-bundle F ⊂ V and a number associated it, called the slope µ(F), which

is a function of the Kähler moduli, ti, of the Calabi-Yau manifold. The vector bundle V is

slope-stable and, hence, the associated gauge field is supersymmetric, in the part of Kähler

moduli space where µ(F) < µ(V ), and it is unstable and supersymmetry is broken where

µ(F) > µ(V ). The boundary between those regions, defined by µ(F) = µ(V ), divides the

Kähler cone into regions of preserved and broken supersymmetry. Such a co-dimension

one “boundary” will be referred to as a stability “wall” in the Kähler cone. In the fol-

lowing sections, we will demonstrate that, in fact, the potential given in (1.6), reproduces

this structure.

We are now in a position to summarize our main results. For concreteness, we will

illustrate the structure of our effective theory for a bundle V with an internal gauge group

G = SU(3), but analogous statements hold for other SU(n) groups. In this case, µ(V ) = 0.

For a general point in the supersymmetric region of the Kähler moduli space, that is for

µ(F) < 0, the low-energy gauge group is E6 (times a possible hidden gauge group which is

not relevant to our discussion), the commutant of SU(3) within E8. The matter field content

consists of a certain number of families and anti-families in 27 and 27 representations,

respectively, plus a number of singlet fields which can be interpreted as the bundle moduli

of V . For specific examples, the number of these multiplets can be computed from the

bundle cohomology of V and we will do this later in the paper. So far, this is simply the

field content of a standard heterotic Calabi-Yau compactification.

Next, we consider the theory at the stability wall, that is, the boundary between

supersymmetric and non-supersymmetric regions in the Kähler cone where µ(F) = 0.

Here, we find that the structure group of the bundle “degenerates” to S(U(2)×U(1)) and,
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hence, the low-energy gauge group enhances from E6 to E6×U(1). This theory has the same

chiral asymmetry between 27 and 27 multiplets as the theory at a generic supersymmetric

point in moduli space (although their individual numbers may change), bundle moduli for

the S(U(2)×U(1)) bundle and additional singlet fields CL. The families/anti-families and

the CL fields carry a charge under the additional U(1) symmetry. It is well-known, in

the context of heterotic compactifications [11, 12, 14], that a low-energy U(1) symmetry

which arises from of a U(1) factor in the internal gauge group is anomalous in the Green-

Schwarz sense. The U(1) vector field is massive as a consequence of the Higgs mechanism.

In addition, associated to this U(1) is a D-term which contains a Fayet-Illiopolous (FI)

contribution.1 In our case, we find that the U(1) D-term takes the following form at lowest

order in the expansions of heterotic M-theory, and close to the boundary between the

supersymmetric and non-supersymmetric regions:

DU(1) = f(ti) −
∑

M,N̄

QMGMN̄CM C̄N̄ . (1.7)

Here GLM̄ is a positive definite metric and QL are the U(1) charges of the fields CL. The

FI term, f(ti), takes the form (up to a positive constant of proportionality)

f(ti) ∼ µ(F)

V (1.8)

with V the Calabi-Yau volume and µ(F) is the slope parameter (described above) of a

sub-bundle. The associated D-term potential is the explicit form of the potential described

in equation (1.6).

Let us discuss this D-term (1.7) in the various regions of the Kähler cone. At the

stability wall, µ(F) = 0, the FI term vanishes and, hence, the fields CM have a vanishing

vacuum expectation value. The combination of Kähler moduli perpendicular to the sta-

bility wall receives a mass from the FI term and represents the Higgs particle. Its axionic

superpartner is absorbed by the U(1) vector field. All of the CL fields are massless at the

stability wall. Now we move into the region µ(F) < 0 where supersymmetry should be

preserved. In this region, the FI term is negative and the fields CM develop a compen-

sating vev to set DU(1) = 0. Of course, this only works if there is at least one negative

U(1) charge QL and we will verify that this is indeed the case. In this way, we find that

supersymmetry is preserved in the region µ(F) < 0, as expected. One might also ask about

matching the number of states we observe in this theory to the results obtained from a

standard analysis of the supersymmetric region. We find that when the fields CL develop

a vev, the U(1) gauge boson receives an additional contribution to its mass and eventually

becomes so massive that it should be dropped from the low-energy spectrum. In this way,

we recover the E6 symmetry at a generic superymmetric point. Further, due to the non-

vanishing CL vevs, one combination of fields, predominately made up from CL fields, now

1We note that for internal gauge fields with structure group G = U(1), it is known [11, 12, 14, 15] that

eq. (1.6) leads to a D-term potential associated with a Green-Schwarz anomalous U(1) symmetry [12, 14].

In fact, it is not difficult to derive this D-term potential from eq. (1.6). In the present paper, however, we

are interested in the case of non-Abelian internal gauge groups, specifically G = SU(n).
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becomes the Higgs multiplet and should be removed from the spectrum. For a matching

of states between the theory at the stability wall and at a generic supersymmetric point

in moduli space we need, therefore, that the number of S(U(2) × U(1)) bundle moduli

plus the number of CL fields equals the number of SU(3) bundle moduli plus one. Again,

we will explicitly verify that this is true in general. What happens if we move into the

region µ(F) > 0 where we expect supersymmetry to be broken? The above D-term will

only lead to broken supersymmetry in this region if the CL fields cannot compensate for

the, now positive, FI term. In other words, all of the charges, QL, need to be negative if

our D-term is to reproduce the supersymmetry properties of the gauge bundle as derived

in higher dimensions. We will show that this is indeed always the case. In summary, the

above D-term reproduces all of the expected features of supersymmetry breaking induced

by internal gauge fields, a subject usually studied in the context of algebraic geometry.

As such, it provides a physical picture for the mathematical notion of slope stability for

vector bundles and it opens up a range of physical applications, for example in relation to

heterotic model building and moduli stabilisation.

In the remainder of this paper, we derive the potential described above, in detail, from

first principles. In the next section, we discuss the ten-dimensional picture, by introducing

the mathematical description of supersymmetric and non-supersymmetric gauge field vevs

in terms of vector bundles via the theorem of Donaldson, Uhlenbeck, and Yau [3, 4]. We

describe how one may study any given model to see if it preserves or breaks supersym-

metry at a given point in moduli space. Section 3 uses this technology to show, from a

ten-dimensional perspective, how supersymmetric and non-supersymmetric regions, with

stability walls between them, arise in the Kähler cone. In section 4, we describe the

four-dimensional effective description of this phenomenon and derive the D-term (1.7). In

section 5, we confirm the picture described in this introduction by studying the vacuum

space of the four-dimensional effective theory. Higher order corrections are explored in sec-

tion 6. In section 7, we conclude and discuss further work. Certain mathematical details

and a conjecture are provided in appendix A. In appendix B, we provide another detailed

example of a bundle exhibiting a stability wall in the Kähler cone and the explicit field

theory describing it.

2 Vector bundle stability in heterotic compactifications

A supersymmetric heterotic string compactification requires the geometric input of a com-

plex three-dimensional Calabi-Yau manifold, X, and a holomorphic vector bundle, V , de-

fined over X. The gauge connection, A, on V with associated field strength, F , must satisfy

the Hermitian Yang-Mills equations (1.1). On a holomorphic vector bundle, V , one can

always choose a connection with a purely (1, 1) field strength, F , so that the last two con-

ditions in (1.1), Fab = Fab = 0, are satisfied. To solve the first equation (1.1), gabFba = 0,

is more difficult, at least for the case of non-Abelian bundle structure groups. However,

for Calabi-Yau manifolds, there exists a powerful way of transforming this equation into

a problem in algebraic geometry. For Kähler manifolds, the Donaldson-Uhlenbeck-Yau

theorem [3, 4] states that on each poly-stable holomorphic vector bundle V , there exists a

– 5 –
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unique connection satisfying the Hermitian Yang-Mills equation (1.1). Thus, to verify that

our vector bundle is consistent with supersymmetry we need to verify that it possesses the

property of poly-stability.

The concept of stability of a bundle (or coherent sheaf), F , over a Kähler three-fold,

X, is defined by means of a quantity called the slope:

µ(F) ≡ 1

rk(F)

∫

X
c1(F) ∧ J ∧ J . (2.1)

Here, J is the Kähler form on X, and rk(F) and c1(F) are the rank and the first Chern class

of F , respectively. A bundle V is now called stable (resp. semi-stable) if for all sub-sheaves

F ⊂ V with 0 < rk(F) < rk(V ) the slope satisfies

µ(F) < µ(V ) (resp. µ(F) ≤ µ(V )) . (2.2)

A bundle is poly-stable if it can be decomposed into a direct sum of stable bundles (V =
⊕

n Vn), which all have the same slope (µ(Vi) = µ(V )). It follows that every stable bundle

is poly-stable and, in turn, every poly-stable bundle is semi-stable.2 Thus, as a series of

implications: stable ⇒ poly-stable ⇒ semi-stable.

In this work, we will consider holomorphic vector bundles with structure group SU(n)

with n = 3, 4, 5. Since the slope of these bundles vanishes(c1(V ) = 0 for SU(n) bundles),

in order for V to be stable we must have that all proper sub-sheaves, F , of V have strictly

negative slope. Thus if F ⊂ V we require,

µ(F) < 0 . (2.3)

But what qualifies a sheaf F to be a sub-sheaf of V ? This is simply the condition that it

has smaller rank and that there exists an embedding F →֒ V . The space of homomorphisms

between F and V , denoted HomX(F , V ), is isomorphic to the space of global holomorphic

sections H0(X,F∗ ⊗ V ). Hence, we have that

V stable ⇐⇒ µ(F) < 0 ∀ F s.t. 0 < rk(F) < n and 0 ⊂ F ⊂ V . (2.4)

To begin our study of stability, we will first re-write the slope condition (2.1) into a

form better suited to our purposes. Given a basis of harmonic (1, 1) forms Ji on X, where

i, j = 1, . . . , h1,1(X), we expand the Kähler form as J = tiJi with the ti being the Kähler

moduli. Inserting this into eq. (2.1), the slope of a sheaf F can then be written as

µ(F) =
1

rk(F)
dijkc

i
1(F)tjtk , (2.5)

where the dijk =
∫

X Ji ∧ Jj ∧ Jk are the triple intersection numbers of X, and c1(F) =

ci
1(F)Ji. It is useful to define the “dual Kähler moduli”, si, by

si ≡ dijkt
jtk . (2.6)

2Note that the converse to these statements do not hold. That is, not every semi-stable bundle is

poly-stable, etc.
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The slope then turns into

µ(F) =
1

rk(F)
sic

i
1(F) , (2.7)

and is, hence, given by a simple dot product between the first Chern class of F and the

dual Kähler moduli si. As stated above, we are interested in bundles V with structure

group G = SU(n) so that c1(V ) = 0 and µ(V ) = 0. Using eq. (2.7), stability for such a

bundle V then amounts to the condition

µ(F) =
1

rk(F)
ci
1(F)si < 0 , (2.8)

for all F ⊂ V . Hence, for a given de-stabilizing sub-sheaf F ⊂ V , eq. (2.8) divides si

space into two regions (the condition µ(F) = 0 defines a co-dimension 1 hyperplane in

si space). To understand stability of a bundle, we need to analyse, for all relevant sub-

sheaves F ⊂ V , how these regions relate to the Kähler cone (the allowed set of Kähler

parameters si). Concretely, this amounts to finding a region in the Kähler cone which is

not de-stabilised by any sub-sheaf F ⊂ V .

A choice of a vector si is referred to as a ‘polarization’. That is, the bundle which is

stable with respect to all polarizations is stable everywhere in the Kähler cone. However,

viewed from the perspective of physics, this is actually a stronger condition than we require.

In a heterotic compactification, we shall define our low-energy effective theory perturba-

tively around a particular vacuum corresponding to some point in moduli space. So, it is

sufficient to show that the bundle is stable somewhere in the Kähler cone (with the hope

that we may eventually stabilize the moduli within this region). In previous work [16, 17],

several of the authors made use of this viewpoint to formulate stability criteria for bun-

dles defined over Calabi-Yau manifolds with h1,1(X) > 1. The resulting algorithm is a

generalization of the stability condition given by Hoppe [18] which, in its original form,

applies to Calabi-Yau manifolds with h1,1(X) = 1. In ref. [17], we describe this algorithmic

method for determining the stable regions of a bundle. We will not repeat the details of

this analysis here, but rather highlight some of its important features in the following.

2.1 Algorithmic testing of slope stability

Vector bundle stability is a notoriously difficult property to prove. The main obstacle arises

in classifying all possible sub-sheaves, F , of the bundle V . There are no general techniques

known for identifying such sub-sheaves or for computing their topological properties such

as Chern classes (and, hence, their slopes from eq. (2.1)). However, as described in ref. [17],

despite these obstacles, progress can be made by systematically constraining the possible

sub-sheaves, F ⊂ V .

2.1.1 Sub-line bundles and stability

In this section we will demonstrate that, in order to prove stability at any given point in

Kähler moduli space, it is sufficient to test the slope criteria (2.2) for all sub-line bundles

L of certain anti-symmetric powers, ∧kV , of the bundle V .

– 7 –
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To begin, consider a rank-n vector bundle V over a projective variety X. If F is a

sub-sheaf of V then it injects into V via the resolution

0 → F → V → K → 0 , (2.9)

with rk(F) < rk(V ) and K = V/F . We shall consider such sub-sheaves one rank at a

time. First, we observe that since V is a vector bundle, it is torsion-free and, thus, has

no rank-zero sub-sheaves. So, we begin with the case of a rank one sub-sheaf. Since F is

torsion free, there is an injection

F i−→ F∗∗ (2.10)

where F∗∗ is the double-dual of F . A locally free coherent sheaf, L, is isomorphic to its

double-dual, that is L∗∗ ≈ L. Since F is rank one and torsion free, it can be shown that

F∗∗ is locally free and, hence, a line bundle [19]. Dualizing the sequence (2.9) we obtain

0 → K∗ → V ∗ → F ∗ → Ext1(K, OX ) → Ext1(V,OX) (2.11)

where Ext1 is the sheaf Ext on X. We now observe that Ext1(V,OX ) = 0 since V is locally

free. Moreover, there exists an open subset U ⊂ X so that K|U is locally free, hence

Ext1(K, OX ) is a torsion sheaf on X. Therefore, Ext1(K, OX )∗ = 0. Thus dualizing (2.11),

and using (2.10) we have

F ⊂ F∗∗ ⊂ V ∗∗ ≈ V . (2.12)

It is straightforward to show that µ(F) = µ(F∗∗). Thus, instead of checking the slope

condition (2.2) for all rank-one torsion-free sub-sheaves of V , it suffices to check it for all

sub-line bundles. But what about sub-sheaves of higher rank?

Let F be a torsion free sub-sheaf of rank k (with 1 < k < n). Once again, we have an

inclusion 0 → F → V which in turn induces a mapping

∧k F → ∧kV (2.13)

which can also be shown to be an injection [20]. By definition of the anti-symmetric tensor

power ∧k, ∧kF is a rank one sheaf. Since F is torsion free, so is ∧kF [21]. Next, by an

argument similar to the one given above (in and around (2.10)), we can argue that there is

a line bundle L associated to ∧kF , namely L = (∧kF)∗∗. Note that in general for a rank

n bundle V ,

c1(∧kV ) =

(

n − 1

k − 1

)

c1(V ) . (2.14)

Thus we observe that for SU(n) bundles, which have c1(V ) = 0, it follows that c1(∧kV ) = 0

as well. Likewise, we see that applied to a rank k, sub-line bundle, F , (2.14) gives us

µ(∧kF) = kµ(F). Therefore, for each rank k de-stabilizing sub-sheaf of V we have a

corresponding de-stabilizing sub-line bundle L ⊂ ∧kV . Thus in proving stability of an

SU(n) vector bundle V , we need only show that if L ⊂ ∧kV , then

µ(L) < µ(∧kV ) = 0 (2.15)

– 8 –
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for all k with 0 < k < n. Since line bundles are classified by their first Chern class on a

Riemannian manifold, this is a dramatic simplification of the problem of stability. Rather

than the untenable problem of considering all sub-sheaves, we have only to analyze and

constrain the well-defined set of line bundle sub-sheaves of ∧kV .

2.1.2 Constraints on line bundle sub-sheaves

What constraints can we place on the line bundles which must be considered in examining

the stability of an SU(n) bundle V ? Using the results of the previous subsection, we begin

by considering a line bundle sub-sheaf L of ∧kV . We present several simple characteristics

that distinguish line bundle sub-sheaves of stable SU(n) bundles.

First, as discussed in (2.4), by definition, if L ⊂ ∧kV then

HomX(L,∧kV ) 6= 0 . (2.16)

Therefore, we have a non-trivial cohomology condition to check for any candidate line

bundle sub-sheaf3 of V . Note that in this section, we will consider the mapping of L →֒ ∧kV

for generic values of the bundle moduli of V .

The second observation is that for SU(n) bundles, if V is stable then H0(X,V ) =

H0(X,V ∗) = 0. Indeed, if H0(X,V ) were non-vanishing, then it is clear that HomX(O, V ) ∼=
H0(X,O∗ ⊗ V ) = H0(X,V ) 6= 0 and, hence, that the trivial sheaf O would de-stabilize V

for any choice of Kähler moduli. A similar argument holds for V ∗ which is stable exactly if

V is. For this reason, checking that H0(X,V ) = H0(X,V ∗) = 0 for an SU(n) bundle V is

a useful first test for stability which we can carry out before proceeding further. Assuming

this has been verified, it is clear that all possible de-stabilizing line bundle sub-sheaves,

L ⊂ V (or L ⊂ V ∗), must satisfy H0(X,L) = 0. Furthermore, if an SU(n) bundle is

stable then its anti-symmetric tensor powers, ∧kV , are at least semi-stable [19, 21]. As a

result, by scanning for possible line bundle sub-sheaves of ∧kV for all values of k, we can

definitively determine the region of stability of the SU(n) bundle V . If we discover that

for a fixed polarization, ∧kV is destabilized by a line bundle L, then by the observations

above, we know that V itself is unstable for this choice of Kähler form.

To summarize, the method of analyzing the stability of an SU(n) bundle at any given

point in Kähler moduli space proceeds as follows.

• Check that H0(X, V ) = H0(X, V ∗) = 0.

Should this not be the case, the bundle is unstable everywhere in Kähler cone and

we can stop.

• Consider all possible line bundles L, as classified by their first Chern class.

The results of the previous subsection assure us that we need only consider line

bundles rather than all sheaves of rank k < n.

3Note that HomX(L,∧k(V )) 6= 0 implies that L is a line bundle sub-sheaf rather than a sub-line bundle

of V . This follows from the fact that while injective maps exist, the image of L in V may not be a bundle.

Equivalently, it is possible that V/L is not always a bundle [22].
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• Discard all line bundles, L, for which Hom(L, ∧
kV) = 0 for all k < n.

If Hom(L,∧kV ) = 0, such a line bundle is not a sub sheaf of ∧kV for any k < n and

thus need not be considered.4 As a simplification, for k = 1, n − 1, we can discard

all line bundles with H0(X,L) 6= 0. Indeed, since we have already verified that

H0(X,V ) = H0(X,V ∗) = 0, such line bundles cannot inject into V and ∧n−1V ≃ V ∗.

• Check the slope of the remaining line bundles.

We must check the slope µ(L) of the remaining line bundles at the point in Kähler

moduli space we are considering. If there exist no line bundles such that µ(L) ≥
µ(V ) = 0, then V is slope-stable at this point in Kähler moduli space.5

3 Stability walls in the Kähler cone

The stability condition (2.8) clearly depends on the choice of Kähler parameters and thus

a bundle need not be stable throughout its entire Kähler cone. Furthermore, the choice

of bundle moduli can affect which potentially de-stabilizing sub-sheaves inject into V . In

principle then, “walls” between regions of stability/instability such as those depicted in

the (dual) Kähler cone in figure 1 can occur. In the neighborhood of such stability walls,

the supersymmetric structure of the low energy effective theory must be studied in more

detail than in the stable region. We begin by exploring the structure of stability walls in

Kähler moduli space.

While this discussion can be applied to a Kähler cone of any size, to illustrate this

concept, we will consider a two-dimensional Kähler cone (that is, h1,1(X) = 2) given by

the positive quadrant in the (s1, s2) plane of dual Kähler moduli. Suppose that V is an

SU(n) bundle V and that a stability wall6 of the form shown in figure 1 is generated by a

de-stabilizing sub-sheaf F ⊂ V with c1(F) = −kJ1 + mJ2, where k > 0 and m > 0.7 From

eq. (2.8), the slope of such a sub-sheaf is given by

µ(F) =
1

rk(F)
ci
1(F)si =

1

rk(F)
(−ks1 + ms2) . (3.1)

This means that, for all Kähler parameters (s1, s2) where µ(F) > 0, that is, for s2/s1 >

k/m, the bundle is unstable while for µ(F) < 0, or s2/s1 < k/m, it is potentially stable,

subject, of course, to other possible destabilizing sub-sheaves. For example, in addition,

there may exist a sub-sheaf with first Chern class given by c1(F) = pJ1 − qJ2, where p > 0

4As an additional simplifying technique, we note that while scanning for possible line bundle sub-sheaves

of ∧kV , if it is true that H0(X,∧kV ) = 0 ∀ k, we can eliminate any line bundles for which H0(X,L) 6= 0.
5For a fixed polarization, if µ(L) > 0, for some line bundle L ⊂ ∧kV , then V is unstable. However, if

µ(L) = 0, one cannot conclude that V itself is necessarily stable/unstable. This last case must be analyzed

on an individual basis.
6In general, for an h1,1(X)-dimensional Kähler moduli space, the stability wall will be a (h1,1(X) − 1)-

dimensional hyperplane.
7Note that for an h1,1(X)-dimensional, positive Kähler cone, if F is to define a stability wall, ci

1(F) must

contain at least one negative and one positive component. For this reason, a bundle defined on a manifold

with h1,1(X) = 1 is stable everywhere or nowhere.
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p/q

c (F )=(−k,m)

c (F )=(p,−q)

s

Figure 1. A two-dimensional dual Kähler cone, defined by s1 ≥ 0 and s2 ≥ 0, where si = dijktjtk.

Shown are two de-stabilizing sub-sheaves F1 and F2 with first Chern classes given by c1(F1) =

(−k, m) and c1(F2) = (p,−q) for some integers k, m, p, q. The bundle V is stable between the lines

with slopes k/m and p/q.

and q > 0, which would yield a lower boundary line with slope p/q. If these two sub-sheaves

are the “maximally destabilizing” ones on either side of the Kähler cone, then the bundle

is supersymmetric for all values p/q < s2/s1 < k/m. For a two-dimensional Kähler cone,

the supersymmetric region of a general bundle will be defined by these upper and lower

boundaries as illustrated in figure 1. For the present discussion, we will focus our attention

on the theory near one of these boundary lines.

What happens on the line with slope k/m itself? There, the bundle is manifestly

semi-stable since µ(F) = µ(V ) = 0. However, to decide whether the low energy theory is

supersymmetric or not, we must consider not only our position in Kähler moduli space,

but in bundle moduli space as well. If we examine this line in Kähler moduli space while

remaining at an arbitrary point in bundle moduli space for which V is an indecomposable

rank n bundle, then supersymmetry will be broken. This must be the case since super-

symmetric vacua exist if and only if the bundle is poly-stable. A semi-stable bundle can

only be poly-stable if it is a direct sum of stable bundles. Therefore, the stability wall in

Kähler moduli space will only correspond to a supersymmetric solution if the bundle de-

composes into a direct sum V → F⊕K where rk(F)+rk(K) = rk(V ) and c1(F) = −c1(K).

Such bundle decompositions near a wall of semi-stability were discussed for K3 manifolds

in ref. [5].

At this special “decomposable” locus in bundle moduli space, the bundle is split and
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poly-stable. While the topological quantities of V remain the same at this locus, other

important features of the bundle and the corresponding low energy theory can change. For

instance, at this decomposable locus, the structure group of an SU(n) bundle will become

S(U(n1) × U(n2)) with n1 = rk(F) and n2 = rk(K). As we shall discuss in detail in

the next section, this change in the structure group of V will also alter the visible gauge

symmetry of the four-dimensional theory. For instance, if rk(V ) = 3, then the commutant

of S(U(2) × U(1)) in E8 is no longer E6, but is enhanced to E6 × U(1).

Before one can study such supersymmetric theories further, it is prudent to ask whether

such a decomposable point exists? Fortunately, it can be shown that if there exists a sub-

sheaf F of V which injects into V , then there will always exist a natural decomposition

of V into direct sum F ⊕ V/F . If we define the relationship between F and V via an

‘extension’ short exact sequence

0 → F → V → V/F → 0 , (3.2)

then it is well-known that the space of possible extensions is given by Ext1(V/F ,F) [23].

Furthermore, the zero-element of the Ext group corresponds to the decomposable locus

V = F ⊕ K, where K = V/F . Finally, note that if a single indecomposable sub-sheaf F
defines a stability wall in moduli space, then, by definition, it (and (V/F)∗) must be stable.8

The decomposition, V → F ⊕ V/F , can be best described by considering a Jordan-

Hölder filtration of V [24]. Points on a moduli space of strictly semi-stable bundles do not

correspond to unique objects, rather they represent an “S-Equivalence class” [19, 24, 25].

Two bundles are S-equivalent if their Jordan-Hölder graded sums Gr(V ) = F1⊕V/F1⊕ . . .

are isomorphic. For any S-equivalence class, there is a unique poly-stable representative

up to isomorphism. That is, there is a unique graded sum in which the summands are

stable bundles and, as a result, we can consider the decomposition of V into this sum on

the stability wall. We will now present a simple example of a Calabi-Yau manifold X and

a bundle V which exhibits a stability wall.

3.1 A stability wall example

Up to this point, our entire discussion has been completely general. Let us now exemplify

our previous comments by considering a bundle defined on the complete intersection Calabi-

Yau manifold [26],

X =

[

P
1

P
3

∣

∣

∣

∣

∣

2

4

]

, (3.3)

defined by a polynomial of bi-degree (2, 4) in the ambient space P
1×P

3. This manifold has

two Kähler moduli, so h1,1(X) = 2. A basis of harmonic (1, 1) forms is given by the Kähler

forms J1 and J2 of the ambient projective spaces P
1 and P

3 (pulled back to X). We denote

the corresponding Kähler moduli by t1 and t2. The Kähler cone is the positive quadrant

t1 ≥ 0 and t2 ≥ 0 and the non-zero triple intersection numbers are given by d122 = 4 and

8It is possible that F could be a direct sum of stable objects with the same slope. In this case, we would

simply obtain a further decomposition for V , that is, V ∼ F1 ⊕ F2 ⊕ . . ..
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d222 = 2. From eq. (2.6), we can calculate the dual Kähler moduli s1 and s2 and we find

s1 = 4(t2)2 , s2 = 8t1t2 + 2(t2)2 . (3.4)

Hence, expressed in terms of these dual Kähler moduli, the Kähler cone is the positive

quadrant above the line s2/s1 = 1/2. Line bundles on X are characterised by two integers,

k and l, and are denoted by OX(k, l). Their first Chern class is given by c1(OX(k, l)) =

kJ1 + lJ2.

We will define a rank 3 monad bundle [16, 27, 28] on this space by the short ex-

act sequence

0 → V → OX(1, 0) ⊕OX(1,−1) ⊕OX(0, 1)⊕2 f−→ OX(2, 1) → 0 . (3.5)

The bundle V is defined as the kernel of the map f . This map is derived from polynomials of

bi-degree ((1, 1), (1, 2), (2, 0), (2, 0)) (mapping sections of OX(1, 0)⊕OX (1,−1)⊕OX (0, 1)⊕2

to sections of OX(2, 1)). The rank of V is three and c1(V ) = 0 so that the structure group is

generically SU(3). At a generic point in moduli space, the only non-vanishing cohomology

of this SU(3) bundle is h1(X,V ) = 2. This means there are two families in 27 multiplets

and no anti-families in 27. The moduli space of V has dimension

h1(X,V ⊗ V ∗) = 22, (3.6)

so that we have 22 E6 singlet fields which should be interpreted as bundle moduli.9 We

select the bundle (3.5) solely because it provides a straightforward example of a bundle

with both supersymmetric and non-supersymmetric regions in its moduli space, and make

no attempt here to consider models with fully realistic particle spectra.

To analyze the stability of this rank three bundle we must consider the potentially

de-stabilizing rank one and two sub-sheaves. As discussed in the previous subsections, this

may be done more simply by considering potentially de-stabilizing line bundle sub-sheaves

of V and ∧2V ∼= V ∗.

Beginning with rank one sub-sheaves, we consider all sub-line bundles of V . One can

verify that H0(X,V ) = 0 for the bundle (3.5) and that all line bundles OX(k, l), where

k, l ≥ 0 have sections. Hence, such semi-positive line bundles need not be considered.

Further, semi-negative line bundles OX(k, l), where k, l ≤ 0 always have a negative slope

in the interior of the Kähler cone and are irrelevant. It is, therefore, clear that the only

line bundles we need to consider are those with ‘mixed’ positive/negative entries in their

first Chern classes. That is, L is given by OX(−k,m) or OX(p,−q) for k,m, p, q > 0. We

seek such line bundles for which HomX(L, V ) 6= 0. A straightforward but lengthy analysis

(see [16, 17] for details) yields that if L = OX(−k,m) then HomX(L, V ) 6= 0 for k ≥ 3 and

m = 1. Further, OX(p,−q) does not inject for any values of p, q. Hence, the “maximally

destabilizing” rank one sub-sheaf corresponds to the line bundle L1 = OX(−3, 1) and we

have the short exact sequence

0 → L1 → V → V/L1 → 0 . (3.7)

9See [28, 29] for general formulae for the spectra and moduli of monad bundles.

– 13 –



J
H
E
P
0
9
(
2
0
0
9
)
0
2
6

This implies that above a line with slope s2/s1 = 3 in the Kähler cone, the bundle is

definitely unstable while it may be stable below this line.

However, we still need to consider rank two destabilizing sub-sheaves or, equivalently,

rank one line bundle sub-sheaves of ∧2V . As before, we find that no lower boundary exists,

that is, HomX(O(p,−q),∧2V ) = 0 for all values of p, q > 0. For the upper boundary, we

consider sub-bundles of the form L = OX(−k,m) in ∧2V . Since V is an SU(n) bundle we

have ∧2V ≃ V ∗. This means we can extract information about ∧2V from the dual

0 → OX(−2,−1) → OX(−1, 0) ⊕OX(−1, 1) ⊕OX(0,−1)⊕2 → V ∗ → 0 (3.8)

of the monad sequence (3.5). Twisting this sequence by L∗ = OX(k,−m) we get

0 → OX(k − 2,−1 − m)

→ OX(k − 1,−m) ⊕OX(k − 1, 1 − m) ⊕OX(k,−1 − m)⊕2 → L∗ ⊗ V ∗ → 0 . (3.9)

One can verify from this sequence that HomX(L,∧2V ) ∼= H0(X,L∗ ⊗ V ∗) 6= 0 only for

L = O(−k, 1) and k ≥ 1. Hence, the maximally destabilizing line bundle is L2 = OX(−1, 1)

and we have

0 → L2 → V ∗ → V ∗/L2 → 0 . (3.10)

Thus, V ∗ is stable only below the line with slope s2/s1 = 1. Equivalently, this implies that

there is a rank two sub-sheaf, F of V with c1(F) = −J1 + J2 and

0 → F → V → V/F → 0 . (3.11)

Since the rank two sub-sheaf F de-stabilizes a larger region of the dual Kähler cone then

the rank one sub-sheaf L1, the existence of L1 = OX(−3, 1) is irrelevant here. While there

are an infinite number of sub-sheaves that de-stabilize some portion of the Kähler cone, for

this bundle there is only one relevant stability wall which is determined by the rank two

sub-sheaf F ⊂ V . From eq. (3.1), the slope of this sub-sheaf is given by

µ(F) =
1

2
(−s1 + s2) , (3.12)

and it follows that V is stable below the line with slope s2/s1 = 1. The dual Kähler cone,

together with the region of stability, are plotted in figure 2.

The discussion of the last two sections is rather mathematical in nature. It would be

desirable to have more physical insight into what is going on, and to be able to describe

stability walls in the Kähler cone in terms of the four-dimensional effective action. To

this end, in the next section, we will study the effective four-dimensional theory describing

fluctuations about the stability wall, that is, the locus in moduli space where the bundle

structure group decomposes. We will then use these results, and the ones of the present

section, to discuss what happens physically as one crosses a wall of stability.
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Figure 2. The dual Kähler cone and the regions of stability/instability for the monad bundle

described in section 3.1. Here L1 and L2 are line bundle sub-sheaves of V and ∧2(V ) respectively.

The boundaries of the dual Kähler cone are denoted by the s2-axis and the line with slope 1/2.

4 Effective field theory at the decomposable locus

In this section, we will compute the potential in the four-dimensional effective theory near

the locus in bundle moduli space where the sequence 0 → F → V → K → 0 becomes the

trivial extension, that is, where the bundle decomposes as V = F ⊕K. To perform such a

computation, the first thing we need to know is the low energy spectrum. We will describe

this in two stages; first presenting those fields which descend from ten-dimensional gauge

fields before continuing to describe those which arise from other sources.

4.1 Four-dimensional spectrum from the gauge sector

As stated in the previous section, it is clear from the sequence 0 → F → V → K → 0,

and the fact that c1(V ) vanishes, that F and K have equal and opposite first Chern class.

Thus, at the decomposable point in bundle moduli space the structure group of V is

S(U(n1)×U(n2)), where n1 +n2 = n. It will turn out that this is not the most convenient

way in which to express this group for what follows, in particular for the calculation of the

spectrum. As such, we will now carry out a little bit of group theory in order to obtain a

more suitable form.

Locally, at the level of Lie algebras, S(U(n1) × U(n2)) is equivalent to SU(n1) ×
SU(n2) × U(1). Elements of the former group are defined by a pair (A,B), where A

and B are n1 × n1 and n2 × n2 unitary matrices respectively, satisfying the condition

det Adet B = 1. Elements of SU(n1) × SU(n2) × U(1) are defined by a triplet (A,B, E),

– 15 –



J
H
E
P
0
9
(
2
0
0
9
)
0
2
6

where A and B are n1 × n1 and n2 × n2 special unitary matrices respectively and E is the

U(1) phase. We may define a map σ : SU(n1) × SU(n2) × U(1) → S(U(n1) × U(n2)) by

(A,B, E) → (A,B) = (En2A, (E∗)n1B) and it is easy to verify that this map is onto and that

Ker(σ) ∼= Zn1n2
. Hence, globally S(U(n1) × U(n2)) ∼= (SU(n1) × SU(n2) × U(1))/Zn1n2

.

To understand the matter content of the low energy heterotic theory we must consider the

branching of the adjoint of E8 under the bundle structure group and its commutant. In

the standard texts [30], these branchings are given in terms of SU(n1) × SU(n2) × U(1)

rather than S(U(n1) × U(n2)) which is why we have discussed the relation between those

two groups.

For the sake of brevity we will only consider one possible structure group in the main

text of this paper. We shall detail in full the case SU(3) → S(U(2) × U(1)) and note that

all other SU(n) decompositions follow in an entirely analogous manner.10 We consider,

then, the case where we have an SU(3) structure group at a generic point in moduli

space, degenerating to SU(2)×U(1) at the stability wall about which we construct our low

energy theory. This gives us a low energy gauge group E6 ×U(1) at this locus. Under the

decomposition E8 ⊃ E6 × SU(2) × U(1) the adjoint of E8 decomposes as follows.

248 = (1,1)0 + (1,2)−3 + (1,2)3 + (1,3)0 + (78,1)0 (4.1)

+(27,1)2 + (27,2)−1 + (27,1)−2 + (27,2)1

In the above decomposition, the first number in the bracket is the E6 representation, the

second number is that of a SU(2) representation and the subscript is the U(1) charge. We

note that our sign conventions differ somewhat from those of [30].

The field content of the low energy theory is determined by the first and zeroth coho-

mologies of various combinations of F and K as determined by the decomposition (4.1).

The first cohomologies tell us about scalars and the zeroth about gauge bosons in the

four-dimensional effective theory. We must remember that the groups SU(2) and U(1) in

the above branching are not directly the structure groups of F and K in the decomposi-

tion V = F ⊕ K. Rather, since F is a rank two bundle with non-vanishing first Chern

class its structure group is U(2). Further, the structure group of K is U(1) with the addi-

tional constraint that c1(F) + c1(K) = 0,11 so that the overall structure group of F ⊕ K
is S(U(2) × U(1)). The proceeding group theory discussion tells us that the elements of

this structure group are given by (EA, (E∗)2) where (A, E) ∈ SU(2) ×U(1). We have sum-

marised the information about the various representations and cohomologies, associated to

low-energy chiral multiplets, in table 1. Note that the charges given as a subscript in the

first column refer to the U(1) ⊂ SU(2)×U(1) while the charges in the last column refer to

10For example, there are two possible decompositions for an SU(3) bundle. First, we have SU(3) →

S(U(2)×U(1)) ≈ SU(2)×U(1), corresponding to V → F ⊕K, a sum of a rank two and a rank one bundle.

There is a second possibility, namely SU(3) → S(U(1) × U(1) × U(1)) ≈ U(1) × U(1), corresponding to a

decomposition into three line bundles: V → L1 ⊕L2⊕L3. In this latter case, one would find two additional

low energy U(1) symmetries. In the interests of brevity, we will only detail the case of a single U(1) here.
11Note that we have assumed here that it is the rank 2 sub-sheaf which injects everywhere and destabilizes

V . The same analysis can be repeated assuming that it is the rank 1 sub-sheaf which is destabilizing

without changing the result. This is because the only information which will enter the considerations of

this subsection is the nature of the bundle at the decomposable locus in bundle moduli space.

– 16 –



J
H
E
P
0
9
(
2
0
0
9
)
0
2
6

Representation Cohomology Physical U(1) charge

(1,2)−3 H1(X,F ⊗K∗) −3/2

(1,2)3 H1(X,F∗ ⊗K) 3/2

(1,3)0 H1(X,F ⊗ F∗) 0

(27,1)2 H1(X,K) 1

(27,2)−1 H1(X,F) −1/2

(27,1)−2 H1(X,K∗) −1

(27,2)1 H1(X,F∗) 1/2

Table 1. Representations, cohomologies and U(1) charges associated to the zero modes which arise

at the stability wall. The first column gives the representation under E6×SU(2)×U(1), the second

column is the relevant cohomology involving F and K, and the last column is the charge of the

states under the U(1) which is in the commutant of S(U(2) × U(1)) in E8.

the U(1) in the commutant of S(U(2)×U(1)) in E8. Let us interpret the fields that appear

here carefully. The (27,1)2, (27,1)−2, (27,2)−1 and (27,2)1 multiplets unambiguously

represent matter fields while the (1,3)0 multiplet clearly corresponds to moduli of the

S(U(2) × U(1)) bundle. The remaining two cohomologies, however, are a little bit more

subtle to interpret. From the point of view of the theory at stability wall - the point of

view we are considering here - these fields are charged under a visible sector gauge group

(the enhanced U(1)) and, hence, they are matter fields. However, it would also not be

unreasonable to regard them as bundle moduli. In general, we think of the cohomology

H1(X,V ⊗ V ∗) as representing bundle moduli.12 At the stability wall, where the bundle

V decomposes as V = F ⊕K, this bundle cohomology splits into various parts as

H1(X,V ⊗ V ∗) = H1(X,F ⊗ F∗) ⊕ H1(X,F∗ ⊗K) ⊕ H1(X,F ⊗K∗) . (4.2)

Here, we have used that K is a line bundle in the case we are considering and that

H1(X,O) = 0 on a Calabi-Yau manifold. Thus, it is not unreasonable to interpret

H1(X,F∗ ⊗ K) and H1(X,F ⊗ K∗) as giving rise to bundle moduli. Thinking about the

perturbations such degrees of freedom would contribute to the higher dimensional gauge

field, we see that they describe the deformations of the split bundle where F and K are

mixed into one another; that is, they parametrize movement in moduli space away from

the decomposable locus. However, we stress that, in this work, the effective field theory

that we will derive will describe perturbations around the decomposable locus, and hence,

we will think of the charged fields in H1(X,F∗ ⊗K) and H1(X,F ⊗K∗) as matter. In the

following, these fields will be denoted by CL.

4.2 Four dimensional spectrum from the gravitational sector

In addition to the fields of the previous subsection, we have the usual low energy moduli

from the gravitational sector of the eleven-dimensional theory. It is important to note

12More precisely, as a vector space, H1(X, V ⊗V ∗) can be viewed as the tangent space to bundle moduli

space.
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that some of these moduli are also charged under the U(1) symmetry in the low energy

gauge group even though they do not descend from higher-dimensional gauge fields. The

moduli fields which are not associated to the E8 ×E8 gauge fields include the dilaton, the

(complexified) Kähler moduli, the complex structure moduli and possible five-brane moduli.

It turns out that, of these fields, only the complex structure moduli are not charged under

the U(1) symmetry. For now, we will focus on tree level results where only the Kähler

moduli are of importance. The other fields will come into play in section 6 where we

calculate what, in the weakly coupled language, correspond to one-loop corrections. For

reasons which will become clear, the following arguments will be carried out using the

language of the strongly-coupled E8 × E8 heterotic string [31]–[35], that is, M-theory on

the orbifold S1/Z2. However, analogous arguments leading to the same results can be

presented starting with the weakly-coupled ten-dimensional theory [2].

In terms of higher-dimensional fields, the Kähler moduli T i, where i, j, k = 1, . . . , h1,1(X)

can be written as follows.

T i = ti + 2iχi (4.3)

Here ti are the Kähler parameters of the Calabi-Yau manifold, which we have already

encountered in our bundle stability analysis, and χi are the associated T -axions which

descend from the M-theory three-form as

C11ab̄ = χiJiab̄ . (4.4)

We recall that {Ji} is a basis of harmonic (1, 1) forms on the Calabi-Yau manifold, chosen

to be dual to a basis {Ci} of the second Calabi-Yau homology such that

1

v1/3

∫

Ci

Jj = δi
j , (4.5)

where v is an arbitrary coordinate volume of the Calabi-Yau space. The index 11 refers

to the coordinate of the S1/Z2 orbifold, and a, b, . . . and ā, b̄, . . . denote holomorphic and

anti-holomorphic Calabi-Yau indices.

It is a well-known fact that anti-symmetric tensor fields in heterotic theories

transform under E8 × E8 gauge transformations [2]. Consider a local infinitesimal

gauge transformation,

δAA = −DAǫ , (4.6)

where the derivative is covariant and ǫ is the gauge transformation parameter. Under such

a change of gauge the two-form C11AB transforms as

δC11AB = −
(κ11

4π

)2/3 1

4π
δ(x11)tr(ǫFAB) , (4.7)

where A,B = 0, . . . , 9 label the coordinates transverse to the S1/Z2 orbifold. Let us

concentrate first on the internal components of equation (4.7) by writing δC11ab̄ = δχiJiab̄.

Integration over Ci × S1/Z2 then leads to the following gauge transformation

δχi = −ǫSǫ2
R

16π

∫

Ci

tr(ǫF ) (4.8)
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for the T -axions, where we have introduced the dimensionless O(κ
2/3
11 ) combination

of constants

ǫSǫ2
R =

(κ11

4π

)2/3 8

4πρv1/3
(4.9)

and πρ is the coordinate volume of the S1/Z2 interval. The constants ǫS and ǫR are the

usual expansion parameters defining four-dimensional heterotic M-theory [36]. In weakly

coupled language, ǫsǫ
2
R = 8πα′/(4v10)

1/3, where v10 is the Calabi-Yau coordinate volume

in the 10-dimensional theory. Hence, the effects considered here are order α′ but at tree

level. Corrections which are one-loop from a weakly coupled perspective will be discussed

in section 6. Normally, the transformation (4.8) does not lead to a non-trivial gauge

transformation of the T -axions under the visible sector gauge group. This is because if

F is nonzero, in order for χ to have a non-trivial transformation according to (4.8), then

F breaks the associated gauge symmetry at the compactification scale and so it does not

appear as a factor in the visible sector gauge group. However, in our case we have a U(1)

factor in the structure group of our bundle which, due to its self commutation, is both

visible and hidden at the same time. In particular, F can have a non-trivial vev in the

U(1) direction without breaking the associated visible sector gauge symmetry.

Thus, for our case, we have a non-trivial U(1) transformation for the moduli T k. If

we consider a gauge transformation associated with the additional U(1) seen in the visible

sector, with a gauge parameter denoted by ǫ̃, we may rewrite (4.8) in terms of the first

Chern c1(F) of the de-stabilizing sub-sheaf F as follows.

δχi = − 3

16
ǫSǫ2

Rǫ̃ ci
1(F) (4.10)

In addition, the singlet matter fields CL carry a U(1) charge QL and transform linearly as

δCL = −iǫ̃QLCL . (4.11)

It is known [11–13] that a low-energy U(1) symmetry in heterotic compactifications which

arises as the commutant of a U(1) factor in the internal bundle structure group is generally

anomalous in the Green-Schwarz sense. In this case, the triangle anomalies in the four-

dimensional theory are cancelled by an anomalous variation of the gauge kinetic function,

as usual. Perhaps not so well-known, but explained in detail in ref. [14], is that this

includes an anomalous variation of the T -modulus dependent threshold corrections of the

gauge kinetic function which transforms under (4.10). We stress that this is different

from the perhaps better known “universal” anomalous U(1) where the triangle anomaly is

cancelled by a variation of the dilaton only [11, 13]. This universal anomaly arises when the

anomalous U(1) symmetry has no internal counterpart in the bundle structure group. Such

a situation can arise in the SO(32) heterotic string but not in smooth compactifications

of the E8 × E8 theory. Hence, in the present context we are always dealing with a “non-

universal” anomalous U(1) symmetry which transforms the T -moduli as in eq. (4.10). In

general, amomalous U(1) symmetries are associated to FI terms in the four-dimensional

theory. While the universal heterotic U(1) implies the well-known dilaton-dependent FI

term [11, 13], the present non-universal case leads to a T -dependent FI term [14] at leading

order. We will now derive this FI term explicitly.
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4.3 The four dimensional potential

The potential of an N = 1 supersymmetric theory contains two types of contribution:

those from D and F-terms. As we will see later, F-terms are less relevant in our context,

so we focus on D-terms and their associated potential. To do this, we need to know the

Kähler potential of the fields involved. Having deferred loop corrections to section 6, we

concentrate here on the leading order which only involves the T -moduli T i = ti + 2iχi and

the singlet matter fields CL. We will work in the usual approximation keeping only leading

terms in CL and in inverse powers of the T -moduli. The usual Kähler potential for the

T -moduli is given by

κ2
4KT = − lnV , V =

1

6
K , (4.12)

where V is the Calabi-Yau volume and K is the cubic polynomial

K = dijkt
itjtk =

1

8
dijk(T

i + T̄ i)(T j + T̄ j)(T k + T̄ k) . (4.13)

The CL part of the Kähler potential has the form

Kmatter = GLMCLC̄M . (4.14)

Here GLM is the matter field space metric, which depends on the various moduli in the

theory. The precise form of this metric will not be needed but it will be important that it

is positive definite.

We now have all of the information we require to compute the D-term contribution to

the four dimensional theory’s potential. Given that we have identified the transformation

properties of our low-energy fields, in particular under the U(1) symmetry, this derivation

is standard and can, in a somewhat different context, be found in the literature (see for

example, [14, 15]). Nevertheless, we will carry this out explicitly, to present a complete

and coherent argument. According to the usual structure of four-dimensional N = 1

supergravity, the D-terms are determined by the following equations [37].

gIJ̄X̄ J̄η = i
∂

∂M I
Dη (4.15)

gIJ̄XIη = −i
∂

∂M̄ J̄
Dη (4.16)

Here, the M I represent all of the fields in the theory, gIJ̄ the complete field space metric, and

η is an index labeling the adjoint of the gauge group. The quantities X are the holomorphic

Killing vectors which generate those analytic isometries of the Kähler field space which can

be gauged. Under such a gauge transformation, the fields M I then transform as

δM I = −ǫηXIη , (4.17)

where ǫη are the gauge parameters. We can now determine the Killing vector for the U(1)

symmetry by comparing this expression with the field transformations (4.10) and (4.11)

which we have derived from the higher-dimensional theory. This leads to

Xi = i
3

8
ǫSǫ2

Rci
1(F) (4.18)

XL = iQLCL . (4.19)
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Inserting this Killing vector into (4.15) and solving for the associated U(1) D-term we obtain

DU(1) =
3

16

ǫSǫ2
R

κ2
4

µ(F)

V −
∑

L,M̄

QLGLM̄CLC̄M̄ , (4.20)

where κ2
4 = κ2

11/(v2πρ) is the four-dimensional Planck constant. Here, we have neglected

contributions to this D-term from 27 and 27 multiplets charged under the U(1) symmetry.

As long as E6 remains unbroken these further contributions vanish and, for our explicit

example, this will indeed be enforced by the E6 D-terms. We note that the above D-term

consists of a FI piece which is proportional to the slope

µ(F) =
1

2
ci
1(F)si =

1

2
dijkc

i
1(F)tjtk =

1

8
dijkc

i
1(F)(T j + T̄ j)(T k + T̄ k) , (4.21)

of the destabilizing sub-sheaf F and a standard matter field piece. We also recall that V
is the Calabi-Yau volume given in eq. (4.12).

5 Stability walls in the effective theory

In this section, we will study the vacuum structure of the effective theory derived in the

previous section. Our aim is to show how this four-dimensional, field theory based analysis

reproduces features seen in the mathematical, ten-dimensional analysis of section 3. In

other words, we would like to show how the abstract mathematical concept of bundle

stability and its implications for supersymmetry can be understood in a physical way, from

our four-dimensional effective theory. It is clear from the expression (4.20) for the D-term

that the nature of the four-dimensional vacuum space crucially depends on the charges QL

of the matter field singlets CL. We begin with a general discussion and then illustrate the

main points with the example discussed in section 3.1.

We need to understand how the interplay between the FI and matter field terms

in eq. (4.20) can reproduce the expected pattern of broken or unbroken supersymmetry.

A crucial observation is that the FI term is proportional, with a positive constant of

proportionality, to the slope, µ(F), of the destabilizing sub-sheaf F . We recall from our

previous discussion that this slope is negative in the part of the Kähler moduli space where

the bundle is stable and hence supersymmetric, and that it is positive where the bundle

breaks supersymmetry. The stability wall which separates these two regions in Kähler

moduli space is defined by µ(F) = 0. Given these features of the FI term, one can ask

how the D-term (4.20) for µ(F) < 0 can vanish and hence preserve supersymmetry as we

would expect. To achieve this, the FI term obviously has to be cancelled by the matter field

contribution in (4.20) through a suitable adjustment of the matter field vevs. This will work

precisely if there is at least one negatively charged matter field CL, with QL < 0 present.

On the other hand, if the D-term (4.20) is to be non-zero and thus break supersymmetry

for µ(F) > 0, as we expect it should, all matter fields need to be negatively charged ; that is,

there should be no matter fields with QL > 0. The D-term (4.20) then becomes a sum of

two positive definite terms in the non-supersymmetric region and there is no way in which

they can cancel each other.
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Hence, for the D-term to correctly describe the expected pattern of supersymmetry

breaking the zero modes at the stability wall are constrained in a specific way. Let us

focus on our main class of examples, namely bundles V with SU(3) structure group which

decompose as V = F⊕K, where F is the rank two de-stabilizing sub-sheaf (and K is locally

free). Then we can indeed show that the required constraints on the particle spectrum

are satisfied. We recall from table 1 that the singlet matter fields CL correspond to the

cohomology groups H1(X,F ⊗K∗) and H1(X,F∗⊗K), where the former leads to negative

and the latter to positive charge. Then one can show the following

Lemma 1. Let V be a holomorphic vector bundle with structure group SU(3) defined over

X, a Calabi-Yau 3-fold. If F is a rank 2, stable sub-sheaf of V , defining the “wall” in the

dual Kähler cone given by µ(F) = 0, such that V is stable for µ(F) < 0 and unstable for

µ(F) > 0, then H1(X,F ⊗ (V/F)∗) 6= 0 and H1(X,F∗ ⊗ V/F) = 0 (for any effective field

theory describing only V ).13

The proof of this lemma (generalized to SU(n) bundles) is provided in appendix A. It

states that all singlet matter fields CL result from the cohomology group H1(X,F⊗K∗) and

therefore, from table 1, are negatively charged, as required. The fact that all of the fields CL

carry U(1) charges of the same sign means, of course, that the U(1) symmetry is anomalous.

This is in line with expectations and we know that this triangle anomaly is cancelled by

the four-dimensional version of the Green-Schwarz mechanism. Since we are dealing with

a non-universal anomalous U(1), as discussed, this involves an anomalous variation of the

threshold correction to the gauge kinetic function induced by the transformation (4.10) of

the T -axions. Details of this can be found in ref. [14].

We would now like to discuss the D-term (4.20) and its associated vacuum space and

particle masses in more detail. This will provide us with a general picture of how the

theory at the stability wall relates to the standard heterotic low-energy theory at a generic

point in the supersymmetric part of Kähler moduli space. As mentioned before, we will

focus on the part of the moduli space where E6 is unbroken, so that we do not need to

consider vevs of 27 and 27 multiplets. Hence, the fields of central interest are the T -moduli

T i = ti+2iχi and the singlet matter fields CL. It is clear that the D-term (4.20) gives mass

to precisely one real combination of the Kähler moduli ti and the matter fields CL, the

Higgs field. Expanding (4.20) around a vacuum (that is, a vanishing D-term, DU(1) = 0) by

writing ti = 〈ti〉+ δti and CL = 〈CL〉+ δCL, we find that this massive linear combination

is given by

DU(1) = − 3

16

ǫSǫ2
R

κ2
4

Gjkc
j
1(F)δtk −

∑

L,M̄

QLGLM̄

(

〈

CL
〉

δC̄M̄ + δCL
〈

C̄M̄
〉)

, (5.1)

where

Gij = −∂2 lnV
∂ti∂tj

(5.2)

13If H1(X,F∗ ⊗ V/F) 6= 0 then the bundle defined by the extension Ext1(F , V/F) = H1(X,F∗ ⊗ V/F)

is not isomorphic to V . This case corresponds to a branch structure in the effective field theory which

provides a transition to a new vector bundle and will be explored in more detail in [38].
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is the Kähler moduli space metric, expressed in terms of the Calabi-Yau volume V as

defined in eq. (4.12). In this discussion, we are ignoring terms which are higher order in
〈

CL
〉

and inverse powers of ti. The Goldstone mode, the corresponding linear combination

of T -axions χi and CL phases, is absorbed by the U(1) vector boson in the super-Higgs

effect. Since supersymmetry is unbroken, the mass of the linear combination (5.1) and the

U(1) vector boson must be equal and they can be computed from eq. (5.1) or from the χi

and CL kinetic terms. Either way one finds the mass is given by

m2
U(1) =

1

s





(3ǫSǫ2
R)2

256κ2
4

ci
1(F)cj

1(F)Gij +
∑

L,M̄

QLQM̄GLM̄ 〈C〉L〈C̄〉M̄


 , (5.3)

where s = Re(S) is the real part of the dilaton. To obtain this result from eq. (5.1) it is

necessary to canonically normalise the kinetic terms 1
4κ2

4

Gij∂δti∂δtj and GLM̄∂δCL∂δC̄M̄ .

Let us discuss this result, beginning at a point on the stability wall. At the stability

wall, µ(F) = 0 and it follows from eq. (4.20) that 〈CL〉 = 0 in order to have a vanishing D-

term. Hence, at the stability wall the Higgs field is a linear combination of Kähler moduli

δti only, while the Goldstone mode consists of T -axions χi. The U(1) and Higgs mass

are then given by the first term in eq. (5.3) which scales like 1/(st2) for a typical Kähler

modulus t. This is to be compared with the mass of a typical gauge sector massive mode

which scales as 1/(st). We see that the U(1) and Higgs masses are suppressed by a factor

1/t and, hence, that in the large radius limit and close to the stability wall it is consistent

to keep these fields in the low energy theory.

What happens as we move away from the stability wall into the supersymmetric region?

From eq. (4.20) the matter field vevs 〈CL〉 are now non-vanishing and their fluctuations

δCL contribute to the Higgs fields and the Goldstone mode. Once we move sufficiently

away from the stability wall, so that µ(F) = O(t2), eq. (4.20) implies GLM̄CLC̄M̄ ∼ 1/t.

Hence, far away from the stability wall, the U(1) mass (5.3) scales as 1/(st) and becomes

comparable to a typical heavy gauge sector mass. In this limit, we should, therefore, remove

the U(1) vector multiplet and the Higgs multiplet from the low-energy theory. In this way,

we recover the standard E6 gauge group at a generic supersymmetric point in the Kähler

moduli space.

What about the matching of chiral multiplets to the usual analysis? First, we note

that far away from the stability wall the Higgs multiplet becomes predominantly a linear

combination of the matter fields CL. This means that there are massless “T -moduli” in this

region, which are slightly corrected versions of the naively defined fields, consistent with

the expectation from standard heterotic compactifications. As for the E6 singlet matter

fields, at the stability wall we have h1(X,F ⊗ (V/F)∗) fields CL and h1(X,F ⊗F∗) bundle

moduli. Away from the stability wall, one combination of CL fields is removed from the

low-energy theory so that we remain with h1(X,F ⊗ (V/F)∗) + h1(X,F ⊗F∗)− 1 singlet

fields. To match standard heterotic compactifications, this must equal h1(X,V ⊗ V ∗), the

number of bundle moduli at a generic supersymmetric point in Kähler moduli space. That

is is indeed always the case is stated in the following lemma.
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Lemma 2. Let V be a holomorphic vector bundle with structure group SU(3) defined over

X, a Calabi-Yau 3-fold. If F is a rank 2, stable sub-sheaf of V , defining the “wall” in the

dual Kähler cone given by ci
1(F)si = 0, such that V is stable for µ(F) < 0 and unstable

for µ(F) > 0, and further, H1(X,F∗ ⊗ V/F) = 0, then

h1(X,V ⊗ V ∗) = h1(X,F ⊗ (V/F)∗) + h1(X,F ⊗ F∗) − 1 , (5.4)

where h1(X,V ⊗ V ∗) is the generic dimension of bundle moduli space when V is a sta-

ble bundle.

The proof of this lemma can be found in appendix A.

In summary, we see that the D-term (4.20) correctly reproduces all of the expected

physical features of gauge bundle supersymmetry. Specifically, the D-term vanishes and,

hence, preserves supersymmetry precisely in the region where the gauge bundle is stable

while it is non-vanishing in the region where the bundle is unstable. We have seen that in

the large radius limit and at the stability wall it is consistent to keep the massive U(1) vector

multiplet and the Higgs multiplet in the low energy theory. Away from the stability wall,

however, these fields develop heavy masses and have to be dropped. In this way, we recover

the usual heterotic effective theory at a generic, supersymmetric point in moduli space.

It is clear that the physics of the non-supersymmetric region of the Kähler cone is

dominated by the potential wall due to the non-vanishing D-term (4.20). Since there is

no perturbative vacuum in this region, we shall refrain from discussing the mass spectrum

in this part of field space. However, to finish this section we shall make a few comments

about the regime of the non-supersymmetric region where our effective field theory analysis

is valid. In addition to the usual expansions of heterotic M-theory, which will be discussed

in more detail in section 6, validity of our approach requires that the potentials present

should be below the compactification scale. Furthermore, the CL field vevs should not be

too large, since we have assumed they were small in deriving the effective potential in this

section. Obviously, both of these conditions are satisfied close to the transition between the

supersymmetric and non-supersymmetric regions of moduli space and, as such, the above

discussion can be trusted. Far into the non-supersymmetric region one may not expect a

four dimensional description to exist at all. The potential grows in size as we penetrate

inside this zone until eventually it becomes of the same mass scale as heavy states which

have been truncated in our analysis. To give some idea of scale, let us examine the size

of the potential in the non-supersymmetric region when all CL vevs vanish. At a typcial

non-supersymmetric point in field space, the ratio of this potential to the fourth power of

a typical mass of a heavy gauge sector state is of order s, the dilaton, when working in

string units. As such, in a valid regime of the effective theory where s is large, one should

typically not include regions with such a potential in the four-dimensional theory. Close

to the boundary with the supersymmetric region (where the D-term potential vanishes

exactly), however, the potential is surpressed from its usual scale by the smallness of

µ(F)2/V4/3, which smoothly increases from zero as we enter the non-supersymmetric part

of the Kähler cone. Thus, we can trust our analysis and investigate this potential in the

four-dimensional theory in the region near to the boundary where (µ(F)2/V4/3)s ≪ 1.
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Representation Cohomology Physical U(1)charge Dimension of Cohomology

(1,2)−3 H1(X,F ⊗K∗) −3/2 16

(1,2)3 H1(X,F∗ ⊗K) 3/2 0

(1,3)0 H1(X,F ⊗ F∗) 0 7

(27,1)2 H1(X,K) 1 0

(27,2)−1 H1(X,F) −1/2 2

(27,1)−2 H1(X,K∗) −1 0

(27,2)1 H1(X,F∗) 1/2 0

Table 2. Particle content of the model defined by the bundle (3.5) at the decomposable locus

where V = F ⊕ K, with F defined by (5.5) and K = OX(1,−1).

5.1 An example

To illustrate the above general discussion, let us return to the example of section 3.1.

Recall, that we have defined the monad bundle, (3.5) on the complete intersection Calabi-

Yau manifold (3.3). As mentioned in section 3.1, we find that the SU(3) bundle, V ,

decomposes as V → F ⊕ K where K = OX(1,−1) is a line bundle. The de-stabilizing

sub-sheaf F ⊂ V has rank two14 and is described by the monad

0 → F → OX(1, 0) ⊕OX(0, 1)⊕2 → OX(2, 1) → 0 . (5.5)

The locus in the moduli space of V where it decomposes as V = F ⊕ K corresponds to

setting to setting to zero the bi-degree (1, 2) polynomials in the monad map, f , given in

(3.5). Using the results of refs. [17, 28], we can calculate the dimensions of the cohomology

groups of F and K listed in table 1. The results are summarised in table 2. The only

matter fields present which are charged under the additional U(1) symmetry appear in

the first and fifth row in the table. They both have negative charge under the four-

dimensional U(1), listed in the third column. In particular, this means that the singlet

matter fields CL, which correspond to the first row in the table, are all negatively charged,

in accordance with Lemma 1. Further, in this particular model it turns out that the 27

matter multiplets are also negatively charged. This means, by gauge invariance, that the

F-term part of the potential vanishes. Having only 27 but no 27 multiplets means the 27

vevs will be forced to zero by the E6 D-terms. Hence, they do not contribute to the U(1) D-

term (4.20). For the present example and all models with similar particle content, the U(1)

D-term (4.20) therefore describes the full vacuum space. In general, models with positively

charged E6 multiplets or anti-families in 27 exist. For such models one would expect

superpotential terms or D-flat directions with non-vanishing 27 and 27 vevs, leading to

a more complicated structure of the vacuum space. As explained before, for such models

the U(1) D-term (4.20) describes the part of the vacuum space where E6 is unbroken.

14In this example F is a bundle that injects into V everywhere in moduli space, while K is a line-bundle

and only injects at the decomposable point. That F is indeed a bundle and not simply a sheaf has been

checked explicitly using the computer algebra packages [39].
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Figure 3. The potential in the dual Kähler cone as a functions of the two dual Kähler variables.

The potential has been minimized with respect to the CL fields (which are not plotted here). The

flat region of the potential is where the bundle is stable. The positive definite potential wall which

one encounters upon entering the region where the bundle is unstable can clearly be seen, arising

at the line with slope = 1.

A generalised expression, including the family and anti-family degrees of freedom in the

D-term, can trivially be derived.

From eqs. (4.20) the D-term for this example reads

DU(1) =
3

16

ǫSǫ2
R

κ2
4

µ(F)

V +
3

2

16
∑

L,M̄=1

GLM̄CLC̄M̄ , (5.6)

where, from eqs. (3.12), (3.4), the slope is given by

µ(F) =
1

2
(−s1 + s2) , s1 = 4(t2)2 , s2 = 8t1t2 + 2(t2)2 . (5.7)

For the volume we have

V = 2t1(t2)2 +
1

3
(t2)3 . (5.8)

In figure 3 we plot the D-term potential (5.6) as a function of the dual Kähler cone variables

s1 and s2, defined in eq. (3.4). The CL vevs, which are not plotted due to lack of dimensions,

have been chosen to be at their minimum. The potential rising from zero in the unstable

region is clearly visible, as is the stability wall determined by the line with slope 1 (in

agreement with the bundle stability regions shown in figure 2). Figure 4 shows the D-term

potential from eq. (5.6) as a function of the coordinate s1, with s2 chosen such that the plot

traces a line perpendicular to the stability wall in the Kähler cone, and the radius |C| of a

representative singlet matter field. This figure makes it clear that there is no “boundary”
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-1.

ÈCÈ

1.5

2.

2.5
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0.01

0.035

0.06

V

Figure 4. The D-term potential from eq. (5.6), as a function of s1, a dual Kähler modulus, and the

absolute value, |C|, of a representative singlet matter field C. In this plot we have chosen s2 = 4−s1

so that we are examining a line in Kähler moduli space perpendicular to the boundary between the

supersymmetric and non-supersymmetric regions. The boundary itself is found at s1 = 2 in this

diagram. Since the exact form of the Kähler potential for the matter fields is not known, a simple,

canonical form has been chosen for illustrative purposes.

to the vacuum space at the stability wall in Kähler moduli space if one considers the full

field space of the theory.

At the stability wall, where t2 = 4t1 and 〈CL〉 = 0, the variation of the D-

term (5.6) becomes

DU(1) =
9ǫSǫ2

R

640κ2
4

1

(t1)2
(4δt1 − δt2) . (5.9)

This shows that it is the combination 4δt1 − δt2 of Kähler moduli perpendicular to the

stability wall which becomes massive at this point, as is also evident from figure 4. The

mass of this linear combination is given by

m2
U(1) =

3(ǫSǫ2
R)2

256κ2
4

1

s(t1)2
. (5.10)

This expression shows explicitly the aforementioned 1/t2 scaling of the U(1) vector and

Higgs masses which justifies keeping these states in the low-energy theory close to the

stability wall. As discussed earlier, far away from the stability wall the Higgs multiplet

becomes pre-dominantly a linear combination of the CL multiplets and there are two mass-

less Kähler moduli as one would expect at a generic point in the supersymmetric region.

From table 2, we have 16 singlet matter fields CL and 7 bundle moduli at the stability wall.

With one of the CL becoming massive one would expect 16 + 7 − 1 = 22 bundle moduli
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at a generic supersymmetric point in moduli space and this is indeed the number we have

computed for this example, see eq. (3.6). This illustrates the general statement in Lemma

2. An additional example, with an unrelated manifold and method of bundle construction

is provided in appendix B.

5.2 Results in bundle stability from the effective theory

So far, we have used mathematical information on vector bundle stability to construct

a low-energy description of bundle supersymmetry. Now that we have established such

a picture, let us reverse our approach and see if can recover some of the mathematical

results in bundle stability from the effective field theory. A key fact to remember is the

interpretation of the charged matter fields, CL, as bundle moduli of the SU(3) bundle - as

described in section 4. When these fields vanish the bundle decomposes as V = F ⊕ K,

and has structure group S(U(2) × U(1)). For non-vanishing CL vevs, at a generic point

in moduli space, the bundle no longer splits up into a direct sum of sub-bundles, and the

structure group reverts to SU(3).

First, in what we would expect to be the supersymmetric region of Kähler moduli

space, the fields CL must acquire a vev if the D-term is to vanish. From this observation,

we reproduce the fact that the bundle will only produce a supersymmetric vacuum in the

so-called “stable” region of Kähler moduli space, if it is at a generic (that is, non-split) point

in its moduli space, that is, if the structure group is SU(3). If, in the normally “stable”

region of Kähler moduli space, the bundle moduli move to the decomposable locus where

the structure group is S(U(2) ×U(1)), the D-term is non-vanishing and supersymmetry is

broken. This is all in perfect agreement with the algebro-geometric analysis presented in

section 2.

As we learned in section 2, at the stability wall in Kähler moduli space, in order to

have a supersymmetric theory, the bundle must be split and semi-stable; that is, it must

decompose into a direct sum of stable bundles of the same slope. From (4.20) we again

see this behaviour reproduced. The FI term vanishes on this line in Kähler moduli space.

Hence, the vanishing of the D-term required by supersymmetry forces the CL field vevs to

vanish - taking us precisely to the split point in bundle moduli space.

As before, our discussion here allows us to go further than has been previously possible

and discuss what happens in the region where supersymmetry is spontaneously broken as

well. Although the D-term (4.20) cannot vanish in this part of moduli space, for fixed

Kähler moduli, the D-term potential can be minimized by vanishing fields CL. Thus, the

bundle will relax to the decomposable locus in bundle moduli space throughout this region,

as well as at the stability wall, in the absence of non-perturbative effects.

As a final comment, it is interesting to note that the D-term (4.20) does not depend on

the complex structure fields. Thus, it should also be true that the stability regions derived

in section 3 are not dependent on the choice of complex structure, for those bundles which

can give rise to supersymmetric theories in four dimensions. This result, which is somewhat

surprising from a mathematical perspective, will be discussed further in the appendix.
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6 Higher order corrections

In the analysis of proceeding sections we have worked to first order in the strong coupling

expansion parameter, ǫS, and the square of the matter fields. The strong coupling expan-

sion parameter ǫS itself, as opposed to the combination ǫSǫ2
R which is what was defined

in (4.9) and has appeared heretofore, is given by the following [31, 36],

ǫS =
(κ11

4π

)2/3 2πρ

v2/3
. (6.1)

In the weakly coupled langauge, we have been working, up to this point, at string the-

ory tree-level. One can do better than this and work out those O(ǫ2
S) corrections that

correspond to string one-loop corrections.15 In particular, the D-term given in (4.20), re-

ceives ǫ2
S corrections which can be calculated. Corrections to the matter field part of the

D-term (4.20) are uninteresting. The only fact that we have used about this term is the

positive definite nature of the matter field metric GLM̄ , and this will not be changed by

such corrections. However, the O(ǫ2
S) corrections to the FI term are of some interest and we

now proceed to derive these. At lowest order, the T -moduli had a non-trivial U(1) trans-

formation while all other moduli fields were invariant. As we will see, at higher order, the

dilaton S and the five-brane position moduli Zα, where α = 1, . . . , N numbers the differ-

ent five-branes, also transform non-trivially. We start by defining these four-dimensional

superfields in terms of the underlying geometric fields. The definition of the T -moduli,

T i = ti + 2iχi, is as previously given (see eq. (4.3)). For the dilaton and the five-brane

moduli we have [42, 43]

S = V0 + πǫS

N
∑

α=1

βα
i tiz2

α + i

(

σ + 2πǫS

N
∑

α

βα
i χiz2

α

)

(6.2)

Zα = βα
i

(

tizα + 2i(−ni
ανα + χizα)

)

. (6.3)

Here, V0 is the Calabi-Yau volume averaged over the orbifold and σ is the dilatonic axion,

the dual of the four-dimensional two-form Bµν = C11µν . Further, zα is the distance from

the left orbifold fixed plane to the α-th five-brane, the βα
i are the charges associated to

the α-th five-brane and ni
α = βα

i /(
∑

i(β
α
i )2). The fields να are axions located on the

five-brane world-volumes. In order to compute the corrections to the D-term, we need

to consider the U(1) transformations of the fields at order ǫ2
S. For the T -moduli and the

matter fields, these transformations are given in eqs. (4.10) and (4.11) with no further

corrections at O(ǫ2
S). The transformation of the dilaton and five-brane position superfields

are slightly more subtle in their origin. To discuss the dilaton, we consider the relevant

terms in the four-dimensional effective action which involve the two-form Bµν = C11µν .

These terms are [14]

S4d,B = − 1

2κ2
4

∫

M4

[

V 2
0 H ∧ ∗H +

3

4
πǫ2

Sǫ2
Rci

1(F)βiB ∧ F

]

, (6.4)

15Corrections corresponding to higher orders in α′ would require knowledge of the Kähler potential for

bundle moduli, which is only known for special cases [40]. For a discussion of higher order corrections in

α′ to the supersymmetry/slope stability condition in the Type II context, see e.g. [41].
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where H = dB + . . . and the dots indicate a Chern-Simons three-form which is irrelevant

for the present discussion. Further, F = dA is the field strength of the U(1) gauge field A

and the integer charges βi of the E8 sector under consideration are defined as

βi =
1

16π2

∫

X

(

trF ∧ F − 1

2
trR ∧ R

)

∧ Ji . (6.5)

In order to dualise the two-form B to the dilatonic axion σ, we set H0 = dB and add to

the above action the term

1

κ2
4

∫

M4

H0 ∧ dσ . (6.6)

By integrating out H0, we find the kinetic term

S4d,dual = − 1

κ2
4

∫

M4

(

1

V 2
0

Σ ∧ ∗Σ
)

(6.7)

for the dilatonic axion σ, where the “field strength” Σ is defined as

Σ = dσ − 3

8
πǫ2

Sǫ2
Rci

1(F)βiA . (6.8)

This field strength needs to be invariant under U(1) gauge transformations with δA = −Dǫ̃,

which implies the following transfomation law for the dilatonic axion.

δσ = −3

8
πǫ2

Sǫ2
Rci

1(F)βi ǫ̃ . (6.9)

The five-brane axions να do not transform under U(1) transformations, so the χi transfor-

mation (4.10) and the above σ transformation (6.9) are all we have to take into account

at the component field level. Note that, from eqs. (6.2), (6.3) and (4.3), this implies non-

trivial transformations for all superfields S, Zα and T i. In particular, the five-brane moduli

superfields Zα in eq. (6.3) pick up a non-trivial transformation through their dependence

on the T -axions χi.

Taking these new field transformations into account, we may now calculate the cor-

rection to our D-term, (4.20), at order ǫ2
S . For this we need the relevant corrections to the

Kähler potential. In eq. (4.12) we have already given the Kähler potential for the T -moduli

which remains unchanged at the orders we require. The Kähler potential for the dilaton

and the five-brane moduli is given by

KS = −ln

[

S + S̄ − πǫS

N
∑

α=1

(Zα + Z̄α)2

βα
i (T i + T̄ i)

]

(6.10)

Given these expressions, we may follow exactly the same procedure as in section 4 to obtain

the corrected D-term

DU(1) = f −
∑

LM̄

QLGLM̄CLC̄M̄ . (6.11)
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Here, the FI term f is given by

f = f (0) + f (1) (6.12)

f (0) =
3

16

ǫSǫ2
R

κ2
4

µ(F)

V (6.13)

f (1) =
3πǫ2

Sǫ2
R

8κ2
4

1

S + S̄

[

βic
i
1(F) + π

N
∑

α=1

(Zα + Z̄α)2

(βα
i (T i + T̄ i))2

βα
i ci

1(F)

]

(6.14)

We see that the leading contribution, f (0), to the FI term precisely reproduces our previous

result (4.20) while the correction term f (1) is surpressed by an extra power of ǫS , as

expected. As mentioned earlier, the second term in (6.11) will also receive corrections.

However, since these small corrections cannot change the sign of this term they are of no

immediate interest to us here.

The O(ǫ2
S) correction f (1) to the FI term depends on fields other than the Kähler

moduli. This means that the position of the stability wall in the Kähler cone will change

slightly as we change, for example, the value of the dilaton or the five-brane moduli Zα.

Naively, this suggests that we have lost the link, as espoused in the rest of the paper,

between the mathematical stability analysis and the four-dimensional effective field theory.

However, this is not the case.

The crucial point is that the four-dimensional fields which appear in the above expres-

sion are not quite those which are “experienced by the gauge fields”. In heterotic M-theory,

the vacuum solution in eleven dimensions includes a warping in the eleventh direction which

introduces dependence of the Kähler moduli on the orbifold coordinate. In other words,

the six dimensional manifold changes shape slightly as we traverse the S1/Z2 orbifold di-

rection. The four dimensional Kähler moduli ti which appear in the above expressions (for

example, in eq. (6.11)) are the orbifold average of these varying Kähler parameters. The

gauge fields of our bundle, however, reside on one of the orbifold fixed planes at either end

of the interval. Thus, in performing the stability analysis of sections 2 and 3, it is not the

averaged quantities which are relevant, but the Kähler moduli of the Calabi-Yau 3-fold

at the relevant orbifold fixed plane. It is precisely the difference between those Kähler

parameters at the orbifold fixed plane and the averaged ones which accounts for the cor-

rection given in equation (6.14). This may be checked explicitly using the expressions for

the warping of heterotic M-theory given in refs. [32, 33, 35, 42]. Note that, in the case of

Abelian bundles, such corrections have been discovered elsewhere in the literature [15, 44].

To make this precise, let us drop the requirement that we write the FI term in terms of

four-dimensional superfields. Instead, we introduce the Kähler moduli s̃i of the Calabi-Yau

manifold on the relevant orbifold fixed plane (as opposed to the averaged Kähler moduli

si) and denote by µ̃(F) = ci
1(F)s̃i/2 and Ṽ the corresponding slope and volume. Then one

can show that the corrected D-term (6.11) can be written as

DU(1) =
3

16

ǫSǫ2
R

κ2
4

µ̃(F)

Ṽ
−
∑

L,M̄

QLGLM̄CLC̄M̄ (6.15)
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All correction terms have disappeared and the FI term is proportional to the slope com-

puted for Kähler parameters on the orbifold plane, where the bundle is actually defined.

This is precisely the slope one would define in a mathematical context. Hence, our inter-

pretation of the U(1) D-term in terms of gauge bundle stability is completely unchanged

by higher order corrections.

7 Conclusions and further work

In this paper, we have explored in detail the structure of heterotic theories near a stability

wall, separating regions in Kähler moduli space where a non-Abelian internal gauge bundle

preserves or breaks supersymmetry. We have found four-dimensional effective theories valid

near such boundaries which provide us with an explicit low-energy description of bundle

supersymmetry breaking and with a physical picture for the mathematical notion of slope

stability. A key observation in our analysis is that at a stability wall the structure group

of the internal gauge bundle decomposes and acquires a U(1) factor. This leads to an

additional U(1) symmetry in the four-dimensional effective theory which is Green-Schwarz

anomalous. The associated U(1) D-term consists of a FI term and a matter field term and

it controls the supersymmetry properties of the bundle from a four-dimensional point of

view. Specifically, the FI term is proportional to the slope µ(F) of the destabilizing sub-

sheaf F ⊂ V of the internal vector bundle V . For negative slope the bundle V is stable. In

the four-dimensional theory this is reproduced, since non-trivial vacuum expectation values

of U(1) charged matter fields compensate the FI term so that the U(1) D-term vanishes

and supersymmetry is preserved. For positive slope, that is an unstable bundle V , the FI

term changes sign. As all U(1) charges have the same sign, the FI term cannot be cancelled

by matter field vevs in this case and supersymmetry is broken. In four dimensions, the

relation between the theory at the stability wall and at a generic supersymmetric point is

governed by the super-Higgs effect. As one moves away from the stability wall the U(1)

vector field mass increases and has to be removed from the low-energy theory, together

with the associated Higgs multiplet. The implied matching of degrees of freedom can be

precisely reproduced by a cohomology calculation. We have also shown that our results are

robust under corrections suppressed from the leading effects by a power of ǫS (the strong

coupling expansion parameter), corresponding to string one-loop corrections. While the FI

term does receive corrections at this order, they have a simple interpretation in terms of

11-dimensional geometry. While the standard four-dimensional Kähler moduli ti = Re(T i)

measure the average Calabi-Yau size across the orbifold, the gauge bundle and its stability

properties are sensitive to the Calabi-Yau moduli, t̃i, on the relevant orbifold fixed plane.

The order ǫ2
S corrections to the FI term simply accounts for the difference between those

two types of moduli when the D-term is expressed in terms of the standard four-dimensional

fields ti. In other words, the order ǫ2
S terms disappear when the D-term is written in terms

of t̃i. Hence, these one-loop corrections do not suggest a modification of the mathematical

notion of bundle stability but simply reflect the fact that the gauge fields are localised in

the orbifold direction. We stress that the basic picture we provide here, while illustrated

for the sake of clarity with vector bundles with SU(3) structure group decomposing into
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S(U(2) × U(1)), is very general. We expect its main features to holds for any Calabi-Yau

three-fold and for any construction of vector bundles. Indeed, the validity of our approach

has been checked in a large number of disparate examples.

Our results suggest many further directions for research, some mathematical in nature

and some physical. It would be of great interest to study various generalisations and

extensions of the mechanism described in this paper. In the present paper, we have focused,

when describing examples, on simple cases with two Kähler moduli, so that the stability

walls in Kähler moduli space are lines. We stress, however, that the phenomenon we

have described is much more general and appears in Kähler cones of any dimensionality

greater than one. In general, the stable region is a sub-cone of the Kähler cone with each

co-dimension one face giving rise to a D-term of the type we have described. At each

generic point on the stability wall only one of these D-term will be relevant. However,

for more than two Kähler moduli co-dimension one faces can intersect so that there are

special loci on the stability wall where two or more D-terms need to be considered at a

time. Further study of more complicated examples would be an interesting future line

of research. Further generalisation could involve considering more complicated splitting

types at the stability wall, such as SU(3) → S(U(1) × U(1) × U(1)), and SU(n) bundle

structure groups with n > 3. Indeed, the authors have already studied such cases in detail

and hope to present examples of this type in future work. An interesting observation is

that the four-dimensional effective field theory only depends on the structure of the gauge

bundle at the split locus in moduli space. This suggests that phenomena similar to the

ones described here can link nominally different bundles together via smooth transitions

in physical moduli space. The authors are currenty actively investigating this effect.

From a more phenomenological perspective, the potential we provide may be of some

interest in moduli stabilization [45]. Its perturbative nature means that this potential is

relatively steep. Thus, if one were to balance it against a non-perturbative potential, such

as that due to membrane instantons, one might be able to obtain a naturally small scale of

supersymmetry breaking. An investigation of whether such an idea is phenomenologically

viable is underway. Global remnants of the anomalous U(1) symmetry at the stability wall

may have implications for the structure of the theory even at a generic supersymmetric

point in moduli space. For example, one might be able to conclude that certain super-

potential terms are forbidden. Such considerations may be used to constrain the type of

vector bundles which can lead to realistic low-energy models.

Finally one can imagine attempting to use the analysis described in this work to

investigate what may be said about bundle stability purely from the point of view of

the four-dimensional effective theory. One goal of such work would be to give a simple

set of rules, for example based on four-dimensional anomaly cancellation, which would

guarantee that a given vector bundle on a Calabi-Yau manifold is stable in a certain region

of moduli space.
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A Two lemmas and a conjecture

In this section, we will state the two lemmas used in section 5 (regarding the dimensions of

certain cohomology groups) somewhat more formally and provide proofs. These results will

be an example of the types of cohomology conditions one can derive in the context of slope

stability. Similar conditions can be derived when different SU(n) bundle decompositions

are considered or when additional enhanced U(1) symmetries are present. Furthermore,

we will make a conjecture regarding the complex structure dependence of a stability wall.

Let X be a Calabi-Yau three-fold with Kähler form J and V a holomorphic vector

bundle defined over X with structure group SU(n), where n = 3, 4, 5. We will consider

a case in which a single sub-sheaf F ⊂ V of rank n − 1 de-stabilizes V in some part of

the Kähler moduli space of X. We define the slope, µ(F), of F for a given polarization

J = tkJk by

µ(F) =
1

rk(F)

∫

X
c1(F) ∧ J ∧ J . (A.1)

Let us further suppose that F itself is slope-stable and has a slope such that it destabilizes

only part of the Kähler cone (as in figure 1 in section 3). Thus, V is stable for polarizations

J with µ(F) < 0 and unstable for polarizations J with µ(F) > 0. The two regions are

separated by a stability wall in Kähler moduli space where µ(F) = 0 and V is semi-stable.

Using the short exact sequence

0 → F → V → V/F → 0 , (A.2)

we note, as in sections 3 and 4, that we can write V = F ⊕ V/F as an element in its

S-equivalence class.

Our physical four-dimensional picture of bundle stability suggests certain conditions

on bundle cohomology which we now discuss. Due to the Fayet-Iliopoulos (FI) D-term

(4.20) derived in this paper, the preservation of supersymmetry in the effective theory

depends upon the existence (or absence) of certain charged matter fields (the fields CL

in (4.20)) described by H1(X,F ⊗ (V/F)∗) and H1(X,F∗ ⊗ V/F). Specifically, in order

to preserve supersymmetry in the region of moduli space with µ(F) < 0, the fields CL

described by H1(X,F ⊗ (V/F)∗) must acquire a vacuum expectation value and cancel the

FI term in (4.20), hence setting the potential to zero in this region of Kähler moduli space.

In particular, this means that such fields must exist and hence H1(X,F ⊗ (V/F)∗) 6= 0.

On the other hand, if the region of moduli space for which µ(F) > 0 is to have broken
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supersymmetry, there must be no fields CL described by H1(X,F∗ ⊗ V/F) = 0. Stating

this more formally, we must have the following Lemma:

Lemma I. Let V be a holomorphic vector bundle with structure group SU(n) (n = 3, 4, 5)

defined over X, a Calabi-Yau 3-fold with Kähler form J . If F is a rank (n−1), stable sub-

sheaf of V , defining a “stability wall” in in the Kähler cone given by µ(F) = 0, such that V

is stable for µ(F) < 0 and unstable for µ(F) > 0 (and V/F is locally free), then H1(X,F⊗
(V/F)∗) 6= 0 and H1(X,F∗ ⊗ V/F) = 0 (for any effective field theory describing V ).

Proof. We begin with the first condition H1(X,F ⊗ (V/F)∗) 6= 0. Consider twisting the

sequence (A.2) by the line bundle K∗, where K = (V/F)∗∗ ≈ V/F . This leads to the short

exact sequence

0 → F ⊗K∗ → V ⊗K∗ → K⊗K∗ → 0 . (A.3)

Then the associated long exact sequence in cohomology contains the terms

0 → H0(X,F ⊗K∗) → H0(X,V ⊗K∗) → H0(X,K ⊗K∗) → H1(X,F ⊗K∗) → . . . (A.4)

Because V is stable for µ(F) < 0, it must follow that at a generic point in the bundle

moduli space of V , H0(X,V ⊗ K∗) = 0 (otherwise K would be a sub-sheaf of V and

would destabilize V ). Furthermore, since K is a line-bundle on a Calabi-Yau manifold,

H0(X,K ⊗K∗) = 1. As a result, we have

0 → H0(X,K ⊗K∗) → H1(X,F ⊗K∗) → . . . (A.5)

and it is clear that we must have H1(X,F ⊗ K∗) 6= 0 in order to avoid a contradiction.

However, since the value of this cohomology is unaffected as we move to the decomposable

locus in the moduli space of V (as described in section 3), we see that H1(X,F⊗(V/F)∗) 6=
0 is satisfied, as expected.

We turn now to the second cohomology condition that we must investigate. In order

for the theory to break supersymmetry above the line with µ(F) = 0, it must be the case

that H1(X,F∗ ⊗V/F) = 0. This too follows immediately from the definition of a stability

boundary. Suppose that H1(X,F∗ ⊗ V/F) 6= 0, then there exists a non-trivial extension:

0 → V/F → Ṽ → F → 0 . (A.6)

But, by definition, this implies that there exists an injective map from V/F to Ṽ at generic

points in moduli space (away from the decomposable locus). Thus, we must ask, can Ṽ

be isomorphic to V ? If this is the case, then V/F is a sub-sheaf of V that destabilizes

V in the region µ(F) < 0. But by construction, we know that F destabilizes V in the

region with µ(F) > 0, hence the bundle is stable nowhere in Kähler moduli space. This is

a contradiction, since we are considering the situation in which the line µ(F) = 0 defines

the boundary of a stable/unstable transition in the moduli space. Thus, if V is stable

for µ(F) < 0, then the extension Ext1(V/F ,F) = H1(X,F∗ ⊗ V/F) defining Ṽ is not

isomorphic to V . Thus, if H1(X,F∗ ⊗ V/F) 6= 0 we are considering an effective theory in

which branch structure is present, connecting more than one vector bundle. However, for

the statement of this lemma, we shall consider only the effective theory describing V .
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Note that similar vanishing conjectures could be formulated for other possible bundle

decompositions of V . However, in the presence of additional U(1) gauge fields and differ-

ent decompositions of E8 under these symmetries, each case must be investigated on an

individual basis.

Next, we turn to the proof of the second lemma in section 5. It states the following:

Lemma II. Let V be a holomorphic vector bundle with structure group SU(n) defined over

X, a Calabi-Yau 3-fold with Kähler form J . If F is a rank n − 1, stable sub-sheaf of V ,

defining a stability wall in in the Kähler cone given by µ(F) = 0, such that V is stable for

µ(F) < 0 and unstable for µ(F) > 0 (and V/F is locally free), and H1(X,F∗ ⊗ V/F) =

0, then

h1(X,V ⊗ V ∗) = h1(X,F ⊗ (V/F)∗) + h1(X,F ⊗ F∗) − 1 , (A.7)

where h1(X,V ⊗ V ∗) is the generic dimension of bundle moduli space when V is a sta-

ble bundle.

Proof. Consider once again the short exact sequence (A.2) which defines the sub-sheaf F .

In order to relate the generic (stable) bundle moduli of V to the possible deformations of

F ⊕ K, we will compute h1(X,V ⊗ V ∗) using (A.2). To begin, we consider the following

three short exact sequences that follow directly from (A.2).

0 → F ⊗ V ∗ → V ⊗ V ∗ → K⊗ V ∗ → 0 (A.8)

0 → F ⊗K∗ → F ⊗ V ∗ → F ⊗F∗ → 0 (A.9)

0 → K⊗K∗ → K⊗ V ∗ → K⊗F∗ → 0 (A.10)

From these sequences we can consider long exact sequences in cohomology. We begin with

(A.9). Using the results of Lemma I, and the fact that for this class of examples V is stable

for µ(F) < 0, we have H0(X,F ⊗ V ∗) = 0 and H2(X,F ⊗K∗) = 0. Thus,

0 → H0(X,F ⊗F∗) → H1(X,F ⊗K∗) → H1(X,F ⊗V ∗) → H0(X,F ⊗F∗) → 0 . (A.11)

Next, from (A.10), we note that since K is a line bundle, K⊗K∗ ≈ O and hence, H1(X,K⊗
K∗) = 0 and by Lemma I, we have that H1(X,K ⊗F∗) = 0. Further, we have H0(X,K ⊗
F∗) = 0 since F is stable. Hence, it follows that

h0(X,K ⊗ V ∗) = 1 and h1(X,K ⊗ V ∗) = 0 . (A.12)

Substituting this information into the cohomology sequence for (A.8), we find

0 → H0(X,V ⊗ V ∗) → H0(X,K ⊗ V ∗) → H1(X,F ⊗ V ∗) → H1(X,V ⊗ V ∗) → 0 (A.13)

Then, in terms of dimensions:

h1(X,V ⊗ V ∗) = h0(X,V ⊗ V ∗) − h0(X,K ⊗ V ∗) + h1(X,F ⊗ V ∗) (A.14)

and upon substitution

h0(X,V ⊗ V ∗) − 1 + h0(X,F ⊗ F) + h1(F ⊗ F) + h1(X,F ⊗K∗) . (A.15)
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Finally, since V and F are stable h0(X,V ⊗ V ∗) = 1 = h1(X,F ⊗ F∗) and we arrive at

the result,

h1(X,V ⊗ V ∗) = h1(X,F ⊗K∗) + h1(F ⊗ F∗) − 1 (A.16)

as required.

We end this section by a statement of a conjecture. This is less easy to verify than the

cohomology conditions described above, though we have found it to be true in all the cases

that we have investigated. The central result of this paper is the form of the FI D-term

given in (4.20) which reproduces the notion of vector bundle stability for a supersymmetric,

anomaly free16 bundle. As discussed in section 5, the form of this potential clearly does

not depend on the complex structure moduli of the Calabi-Yau manifold X. In addition,

using the techniques of section 3, we have searched through numerous examples, and have

yet to find a complex structure dependent boundary wall for an anomaly free bundle. As

a result, we posit the conjecture:

Conjecture. Let V be an anomaly-free holomorphic vector bundle with structure group

SU(n) (n = 3, 4, 5) defined over X, a Calabi-Yau 3-fold. If there exists a wall of semi-

stability of V in Kähler moduli space (defining the boundary between stable and unstable

regions), then the position of this wall is independent of the complex structure moduli of X.

This conjecture is a consequence of our field-theoretical approach to slope-stability but

it is not obvious to the authors how to prove it from an algebraic geometry viewpoint.

B Another example

To highlight the versatility of the formalism developed in this paper, in this section we will

sketch another example bundle, its regions of stability in the Kähler cone and the effective

field theory modeling this behavior.

We shall once again consider a bundle defined on a complete intersection Calabi-Yau

manifold, X. The so-called ‘bi-cubic’ 3-fold:

X =

[

P
2

P
2

∣

∣

∣

∣

∣

3

3

]

, (B.1)

defined by a polynomial of bi-degree (3, 3) in the ambient space P
2×P

2. As in our previous

example, h1,1(X) = 2 and the Kähler cone is the positive quadrant t1 ≥ 0 and t2 ≥ 0. The

non-zero triple intersection numbers are given by d122 = 3 and d112 = 3. It follows that

the dual Kähler moduli s1 and s2 are

s1 = 3t2(2t1 + t2) , s2 = 3t1(2t2 + t1) . (B.2)

16Recall that a vector bundle V in the E8 × E8 heterotic theory defines an anomaly free superymmetric

theory if ch2(TX)− ch2(V ) = W where W is an effective class of X [2, 46, 47]. This condition is necessary

here, as without it anti five-branes or a non-supersymmetric hidden bundle would be required to make

the reduction from eleven to four dimensions consistent. This would result in a theory which was not

supersymmetric in four dimensions [48, 49], and as such the analysis of this paper would not apply.
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Hence, the dual Kähler cone in this case is the entire positive quadrant. We shall define

line bundles OX(m,n) on this space using the same notation as in section 3.1.

On the given manifold, we define a bundle, V , by extension [50],

0 → W → V → L → 0 , (B.3)

where L is a line bundle and W is a rank 2, U(2) monad bundle defined as follows

0 → W → OX(2, 0)⊕3 → OX(2, 2) → 0 (B.4)

L = OX(−4, 2).

Since the first chern classes of L and W satisfy

c1(W ) = −c1(L) (B.5)

the extension bundle V defined by (B.3) has c1(V ) = 0 and hence defines an SU(3) bundle.

Furthermore, V is a non-trivial extension of L by W (i.e. V is not simply the sum W ⊕L
since Ext1(L,W ) 6= 0). The spectrum of the four dimensional E6 theory associated to V

consists of 18 27 matter fields and 18 27’s for a net chiral asymmetry of zero. In addition,

there are generically h1(X,V ⊗ V ∗) = 530 bundle moduli.

We can now ask, what are the regions of stability of V in the Kähler cone? A simple

analysis using the techniques of section 2.1.2 verifies first that W is an everywhere stable

U(2) bundle, and furthermore, that W is generically the only de-stabilizing sub-sheaf of V .

Thus, since c1(W ) = 4J1 − 2J2, V itself is stable above the line with slope s2/s1 = 2 and

unstable beneath it. We will now reproduce this geometric result from the point of view

of the effective field theory developed in this work.

As was argued in section 3, at the line of semi-stablility in the dual Kähler cone

defined by s2 = 2s1, V will be forced away from an SU(3) configuration towards the

structure group S(U(2) × U(1)) (and the four dimensional symmetry will be enhanced to

E6 × U(1)). As in the example given in 5.1, V decomposes as V = F ⊕ K where in this

case F = W and K = L (as defined above in (B.4)). Note that the split locus is simply

the zero of the group Ext1(L,W ) which describes the space of possible extensions. Using

the results of [16, 27, 28] to compute the cohomology of W and L on the bi-cubic, and

the representation decomposition given in table 1, we find that non-vanishing massless

spectrum of V at the decomposable locus is given by

h1(X,W )−1/2 = 18 h1(X,L∗)−1 = 18 , (B.6)

h1(X,W ⊗ W )0 = 9 h1(X,W ⊗ L∗)−3/2 = 522 . (B.7)

The subscript on the cohomology denotes the U(1) charge of the fields. We may now write

down the U(1) D-term (4.20) contribution to the potential

DU(1) =
3

16

ǫSǫ2
R

κ2
4

µ(W )

V +
3

2

16
∑

L,M̄=1

GLM̄CLC̄M̄ , (B.8)
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where here, from (B.4), the slope is given by

µ(W ) =
1

2
(4s1 − 2s2) (B.9)

while for the volume we have

V =
3

2
(t1t2)(t1 + t2) . (B.10)

The relevant charged matter fields CL in this case are the fields in H1(X,W ⊗ L∗),

since the fields associated to H1(X,W ) and H1(X,L∗) will have vevs forced to zero by

the requirement that E6 remains unbroken. As we would predict based from the algebro-

geometric results of the stability analysis, negatively charged matter is present so that the

vevs of the charged fields can adjust to cancel the FI term when µ(F) < 0, setting the

D-term to zero. Thus, supersymmetry is preserved for the region of dual Kähler moduli

space defined by s2 > 2s1. However, since there is no positively charged matter available,

for the region of moduli space where µ(F) > 0, the FI term cannot be cancelled and

supersymmetry is broken. This is in agreement with what we would expect from the

general results of Lemma 1.

Finally, for this example, we can verify the general predictions of Lemma 2 by consid-

ering the number of bundle moduli associated to V at a generic point in its moduli space

as well as at the decomposable locus. According to Lemma 2, we would expect there to

be one extra light modulus at the stability wall. For the bundle V defined by (B.3), at

a generic point in its moduli space, h1(X,V ⊗ V ∗) = 530. Moreover, using the results of

(B.6) we observe that at the decomposable locus, the number of bundle moduli is given by

h1(X,W ⊗ W ∗) + h1(X,W ⊗ L∗) = 531. Thus, as described in section 5, as we move in

Kähler moduli space away from the stability wall, one degree of freedom is made massive

by the Higgs mechanism, (5.3), as expected.
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